In the high-energy environment of coastal seas and estuaries,strong sediment resuspension/ deposition events are driven by surface waves,tides,winds and buoyancy driven currents.In recent years,A POM based three-dimen...In the high-energy environment of coastal seas and estuaries,strong sediment resuspension/ deposition events are driven by surface waves,tides,winds and buoyancy driven currents.In recent years,A POM based three-dimensional,wave-current coupled,sediment transport model has been developed by the University of New South Wales.This paper presents several examples of the model applications to study sediment dynamics in the environments where forcings such as waves,tides,and winds are equally important to affect sediment fluxes and distributions.Firstly,the sediment transport model coupled to the Yellow Sea general circulation model and a third generation wave model SWAN was implemented in the Yellow Sea to study the dynamics of the sediment transport and resuspension in the northern Jiangsu shoal-wate(rNJSW).The sediment distributions and fluxes and their inter-annual variability were studied by realistic numerical simulations.The study found that the surface waves played a dominant role over the tides to form the turbidity maxima along the muddy coast of NJSW. Secondly,the sediment transport model was used to explore the effect of suspended sediment-induced stratification in the bottom boundary laye(rBBL).The model uses a re-parameterized bottom drag coefficient Cd that incorporates a linear stability function of flux Richardson number Rf.The study has shown that the sediment induced stratification in the BBL reduces the vertical eddy viscosity and bottom shear stress in comparison with the model prediction in a neutrally stratified BBL.In response to these apparent reductions,the tidal current shear is increased and sediments are abnormally concentrated within a thin wall layer that is overlain by a thicker layer with much smaller concentration.The formation of this fluid-mud layer near the seabed has led to a significant reduction in the total sediment transport.This study contributes to the understanding of formations of tidal flats along the coasts of turbid seas and estuaries.展开更多
The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand par...The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.展开更多
The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during...The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during the entire winter in 1998 ̄1999 and 2000 ̄2001. The cou- pled model is forced by real time numerical weather prediction fields. The results show that the thermodynamic effects of atmosphere and ocean are very important for the evolvement of ice in the Bohai Sea, especially in the period of ice freezing and melting. Ocean heat flux plays a key role in the thermodynamic coupling. The simulation also presents the different thermodynamic features in the ice covered region and the marginal ice zone. Ice thickness, heat budget at the interface, and surface sea temperature, etc. between the two representative points are discussed.展开更多
A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent s...A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent snow storm over southern China and the impact of the Madden Julian oscillation (MJO) on this persistent snow storm were investigated. Compared with the stand-alone RegCM3, the coupled model performed better at reproducing the spatial-temporal evolution and intensity of the precipitation episodes. The power spectral analysis indicated that the coupled model successfully captured the dominant period between 30 and 60 days in the precipitation field, leading to a notable improvement in simulating the magnitude of intraseasonal precipitation variation, and further in enhancing the intensity of the simulated precipitation. These improvements were mainly due to the well-simulated low-frequency oscillation center and its eastward propagation characteristics in each MJO phase by RegCM3-POM, which improved the simulations of MJO-related low-frequency vertical motions, water vapor transport, and the deep inversion layer that can directly influence the precipitation event and that further improved the simulated MJOprecipitation relationship. Analysis of the phase relationship between convection and SST indicated that RegCM3-POM exhibits a near-quadrature relation between the simulated convection and SST anomalies, which was consistent with the observations. However, such a near-quadrature relation was not as significant when the stand-alone RegCM3 was used. This difference indicated that the inherent coupled feedback process between the ocean and atmosphere in RegCM3-POM played an important part in reproducing the features of the MJO that accompanied the snow storm.展开更多
According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine Environ...According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine EnvironmentForecast Centers (NMEFC) numerical forecasting ice model of the Bohai Sea and the Princeton ocean model (POM).In the coupled model, the transfer of momentum and heat between ocean and ice is two-way, and the change of icethickness and concentration depends on heat budget not only at the surface and bottom of ice, but also at the surfaceof open water between ices. The dynamic and thermodynamic coupling process is expatiated emphatically. Somethermodynamic parameters are discussed as well.展开更多
An optimal interpolation assimilation model for satellite altimetry data is developed based on Princeton Ocean Model (POM), which is applied in a quasi-global domain, by the method of isotropic correlation between s...An optimal interpolation assimilation model for satellite altimetry data is developed based on Princeton Ocean Model (POM), which is applied in a quasi-global domain, by the method of isotropic correlation between sea level anomaly (SLA) and sea temperature anomaly. The performance of this assimilation model is validated by the modeled results of SLA and the current patterns. Comparisons between modeling and satellite data show that both the magnitudes and distribution patterns of the sinmlated SLA are improved by assimilation. The most significant improvement is that meso-scale systems, e.g., eddies, are well reconstructed. The evolution of an eddy located in the northwest Pacific Ocean is traced by using the assimilation model. Model results show that during three months the eddy migrated southwestward for about 6 degrees before merging into the Kuroshio. The three dimensional structure of this eddy on 12 August 2001 is further analyzed. The strength of this warm, cyclonic eddy decreases with the increase of depth. The eddy shows different horizontal patterns at different layers, and the SLA and temperature fields agree with each other well. This study suggests that this kind of data assimilation is economic and reliable for eddy reconstruction, and can be used as a promising technique in further studies of ocean eddies as well as other fine circulation structures.展开更多
文摘In the high-energy environment of coastal seas and estuaries,strong sediment resuspension/ deposition events are driven by surface waves,tides,winds and buoyancy driven currents.In recent years,A POM based three-dimensional,wave-current coupled,sediment transport model has been developed by the University of New South Wales.This paper presents several examples of the model applications to study sediment dynamics in the environments where forcings such as waves,tides,and winds are equally important to affect sediment fluxes and distributions.Firstly,the sediment transport model coupled to the Yellow Sea general circulation model and a third generation wave model SWAN was implemented in the Yellow Sea to study the dynamics of the sediment transport and resuspension in the northern Jiangsu shoal-wate(rNJSW).The sediment distributions and fluxes and their inter-annual variability were studied by realistic numerical simulations.The study found that the surface waves played a dominant role over the tides to form the turbidity maxima along the muddy coast of NJSW. Secondly,the sediment transport model was used to explore the effect of suspended sediment-induced stratification in the bottom boundary laye(rBBL).The model uses a re-parameterized bottom drag coefficient Cd that incorporates a linear stability function of flux Richardson number Rf.The study has shown that the sediment induced stratification in the BBL reduces the vertical eddy viscosity and bottom shear stress in comparison with the model prediction in a neutrally stratified BBL.In response to these apparent reductions,the tidal current shear is increased and sediments are abnormally concentrated within a thin wall layer that is overlain by a thicker layer with much smaller concentration.The formation of this fluid-mud layer near the seabed has led to a significant reduction in the total sediment transport.This study contributes to the understanding of formations of tidal flats along the coasts of turbid seas and estuaries.
文摘The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.
基金supported by the National Natural Science Foundation of China under contract Nos 40233032 and 40376006the National High Technolo-gy Research and Development Program of China(“863")under contract Nos 2002AA639340 and 2001 AA631070the Principal Project under contract Nos 2001DIA50040 and 2001CB7l1006.
文摘The coupled ice- ocean model for the Bohai Sea is used for simulating the freezing, melting, and variation of ice cover and the heat bal- ance at the sea- ice, air- ice, and air- sea interfaces of the Bohai Sea during the entire winter in 1998 ̄1999 and 2000 ̄2001. The cou- pled model is forced by real time numerical weather prediction fields. The results show that the thermodynamic effects of atmosphere and ocean are very important for the evolvement of ice in the Bohai Sea, especially in the period of ice freezing and melting. Ocean heat flux plays a key role in the thermodynamic coupling. The simulation also presents the different thermodynamic features in the ice covered region and the marginal ice zone. Ice thickness, heat budget at the interface, and surface sea temperature, etc. between the two representative points are discussed.
基金supported by grants from the National Basic Research Program of China (973 Program,Grant Nos.2012CB955901 and 2011CB952002)the National Science and Technology Support Program of China (Grant No.2009BAC51B03)the National Natural Science Foundation of China (Grant Nos. 41105044 and 41105045)
文摘A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent snow storm over southern China and the impact of the Madden Julian oscillation (MJO) on this persistent snow storm were investigated. Compared with the stand-alone RegCM3, the coupled model performed better at reproducing the spatial-temporal evolution and intensity of the precipitation episodes. The power spectral analysis indicated that the coupled model successfully captured the dominant period between 30 and 60 days in the precipitation field, leading to a notable improvement in simulating the magnitude of intraseasonal precipitation variation, and further in enhancing the intensity of the simulated precipitation. These improvements were mainly due to the well-simulated low-frequency oscillation center and its eastward propagation characteristics in each MJO phase by RegCM3-POM, which improved the simulations of MJO-related low-frequency vertical motions, water vapor transport, and the deep inversion layer that can directly influence the precipitation event and that further improved the simulated MJOprecipitation relationship. Analysis of the phase relationship between convection and SST indicated that RegCM3-POM exhibits a near-quadrature relation between the simulated convection and SST anomalies, which was consistent with the observations. However, such a near-quadrature relation was not as significant when the stand-alone RegCM3 was used. This difference indicated that the inherent coupled feedback process between the ocean and atmosphere in RegCM3-POM played an important part in reproducing the features of the MJO that accompanied the snow storm.
基金the National Natural Science Foundation of China under contract Nos40233032 , 40376006the National High Technology Research and Development Program(863) of China under contract Nos 2002AA639340 , 2001AA631070 the Principal Project under contract Nos2001DIA50040 , 2001CB711006.
文摘According to the earlier international studies on the coupled iceocean model and the hydrology, meteorology, and icefeatures in the Bohai Sea, a coupled iceocean model is developed based on the National Marine EnvironmentForecast Centers (NMEFC) numerical forecasting ice model of the Bohai Sea and the Princeton ocean model (POM).In the coupled model, the transfer of momentum and heat between ocean and ice is two-way, and the change of icethickness and concentration depends on heat budget not only at the surface and bottom of ice, but also at the surfaceof open water between ices. The dynamic and thermodynamic coupling process is expatiated emphatically. Somethermodynamic parameters are discussed as well.
基金The Key Project of National Natural Science Foundation Basic Research Program of China (Argo973, Grant No. 2007CB816002)special fund for fundamental scientific research under contract No. 2008G08the advanced programs of ministry of personnel for returness
文摘An optimal interpolation assimilation model for satellite altimetry data is developed based on Princeton Ocean Model (POM), which is applied in a quasi-global domain, by the method of isotropic correlation between sea level anomaly (SLA) and sea temperature anomaly. The performance of this assimilation model is validated by the modeled results of SLA and the current patterns. Comparisons between modeling and satellite data show that both the magnitudes and distribution patterns of the sinmlated SLA are improved by assimilation. The most significant improvement is that meso-scale systems, e.g., eddies, are well reconstructed. The evolution of an eddy located in the northwest Pacific Ocean is traced by using the assimilation model. Model results show that during three months the eddy migrated southwestward for about 6 degrees before merging into the Kuroshio. The three dimensional structure of this eddy on 12 August 2001 is further analyzed. The strength of this warm, cyclonic eddy decreases with the increase of depth. The eddy shows different horizontal patterns at different layers, and the SLA and temperature fields agree with each other well. This study suggests that this kind of data assimilation is economic and reliable for eddy reconstruction, and can be used as a promising technique in further studies of ocean eddies as well as other fine circulation structures.