The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calcula...The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calculations. The formation energy of interstitial H is calculated to be about 2.06 eV and we suggest that it may be the dominant defect in KDP crystal. The formation energy of an O vacancy (5.25 eV) is much higher than that of interstitial O (0.60 eV). Optical absorption centres can be induced by defects of O vacancies, interstitial O and interstitial H. We suggest that these defects may be responsible for the lowering of the damage threshold of the KDP. A K vacancy defect may increase the ionic conductivity and therefore the laser-induced damage threshold decreases.展开更多
基金Project supported by the Program for New Century Excellent Talents at the University of China (Grant No.NCET-08-0722)
文摘The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calculations. The formation energy of interstitial H is calculated to be about 2.06 eV and we suggest that it may be the dominant defect in KDP crystal. The formation energy of an O vacancy (5.25 eV) is much higher than that of interstitial O (0.60 eV). Optical absorption centres can be induced by defects of O vacancies, interstitial O and interstitial H. We suggest that these defects may be responsible for the lowering of the damage threshold of the KDP. A K vacancy defect may increase the ionic conductivity and therefore the laser-induced damage threshold decreases.