讨论了水性体系中经紫外光引发在PP膜表面的丙烯酸接枝聚合反应的实验影响因素,考察了光敏剂、单体浓度、光照时间以及反应温度对接枝率的影响.红外光谱证明了AA接枝到了PP表面,在一定范围内,接枝率随时间和温度的增加而增加,在光照7 m...讨论了水性体系中经紫外光引发在PP膜表面的丙烯酸接枝聚合反应的实验影响因素,考察了光敏剂、单体浓度、光照时间以及反应温度对接枝率的影响.红外光谱证明了AA接枝到了PP表面,在一定范围内,接枝率随时间和温度的增加而增加,在光照7 m in、温度在60℃时达到最大值.展开更多
Polytetrafluoroethylene (PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO2 particles were used as the friction modifie...Polytetrafluoroethylene (PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO2 particles were used as the friction modifiers to improve the friction and wear performance of PTFE-PPS composites. The friction and wear characteristics of PTFE/PPS-nano-ZrO2 composites were investigated by a block-on-ring tester under dry friction sliding condition. The worn surfaces, counterpart transfer films and wear debris were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the increase of nano- ZrO2 content could effectively reduce the coefficient of friction and enhance the anti-wear ability of PTFEPPS composites. Especially, the best tribological properties of the composites were obtained when the particle content of nano-ZrO2 was 10 vol%, the anti-wear performance of composite is 195 times better than that of the unfilled PTFE-PPS composite. Under different conditions, the coefficient of friction of PTFE/PPS-nano-ZrO2 composites was more affected by the applied load while the wear rate was more affected by the sliding velocity.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51165022,51675509)
文摘Polytetrafluoroethylene (PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO2 particles were used as the friction modifiers to improve the friction and wear performance of PTFE-PPS composites. The friction and wear characteristics of PTFE/PPS-nano-ZrO2 composites were investigated by a block-on-ring tester under dry friction sliding condition. The worn surfaces, counterpart transfer films and wear debris were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the increase of nano- ZrO2 content could effectively reduce the coefficient of friction and enhance the anti-wear ability of PTFEPPS composites. Especially, the best tribological properties of the composites were obtained when the particle content of nano-ZrO2 was 10 vol%, the anti-wear performance of composite is 195 times better than that of the unfilled PTFE-PPS composite. Under different conditions, the coefficient of friction of PTFE/PPS-nano-ZrO2 composites was more affected by the applied load while the wear rate was more affected by the sliding velocity.