The synthetic routes, materials properties and future applications of clay-polymer nanocomposites are reviewed. Nannocomposites are composite materials.that contain particles in the size rang 1-100 nm. The particles g...The synthetic routes, materials properties and future applications of clay-polymer nanocomposites are reviewed. Nannocomposites are composite materials.that contain particles in the size rang 1-100 nm. The particles generally have a high aspect ratio and a layered structure that maximizes bonding between the polymer and particle. Adding a small quantity of these additives (0.5%~5%) can increase many of the properties of polymer materials, such as tensile characteristics, heat distortion temperature, scratch resistance, gas permeability resistance, and flame retardancy. This new type of materials may be prepared via various synthetic routes comprising exfoliation adsorption, in-situ intercalative polymerization and melt intercalation. In this paper we report the new method for preparation EPDM-clay nanocomposites. The EPDM-clay nanocomposites were prepared by using two different approaches (direct and indirect). It is found that there is no difference between both methods but the direct method is easier, its cost is lower and industrially more practical. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed a exfoliation structure. The mechanical properties of these nanocomposites significantly improved.展开更多
The FeNip/PP nanocomposites were successfully prepared by the two-step blending method and the permeable layer interface with thickness of 2 to 10 nm was formed on the surface of nanopowders. The interface is composed...The FeNip/PP nanocomposites were successfully prepared by the two-step blending method and the permeable layer interface with thickness of 2 to 10 nm was formed on the surface of nanopowders. The interface is composed of the lattice and molecular chain, in which the polypropylene molecular chain enters the lattice defects and forms a cross-linked structure. The interface causes the FeNi nanopowders to be well compatible with the polypropylene matrix and uniformly dispersed in the matrix, and significantly improves the mechanical properties of composites. The tensile strength of 2 wt% FeNip/PP composites reached 38 MPa, 23% higher than that of pure PP resin. The shielding performance of 20 wt% FeNip/PP composites reached 9.8 dB in the frequency range of 1-100 MHz.展开更多
文摘The synthetic routes, materials properties and future applications of clay-polymer nanocomposites are reviewed. Nannocomposites are composite materials.that contain particles in the size rang 1-100 nm. The particles generally have a high aspect ratio and a layered structure that maximizes bonding between the polymer and particle. Adding a small quantity of these additives (0.5%~5%) can increase many of the properties of polymer materials, such as tensile characteristics, heat distortion temperature, scratch resistance, gas permeability resistance, and flame retardancy. This new type of materials may be prepared via various synthetic routes comprising exfoliation adsorption, in-situ intercalative polymerization and melt intercalation. In this paper we report the new method for preparation EPDM-clay nanocomposites. The EPDM-clay nanocomposites were prepared by using two different approaches (direct and indirect). It is found that there is no difference between both methods but the direct method is easier, its cost is lower and industrially more practical. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed a exfoliation structure. The mechanical properties of these nanocomposites significantly improved.
基金Funed by the National Science Foundation of China(No.61361008)the Science and Technology Support Program of Jiangxi,China(No.12004532)
文摘The FeNip/PP nanocomposites were successfully prepared by the two-step blending method and the permeable layer interface with thickness of 2 to 10 nm was formed on the surface of nanopowders. The interface is composed of the lattice and molecular chain, in which the polypropylene molecular chain enters the lattice defects and forms a cross-linked structure. The interface causes the FeNi nanopowders to be well compatible with the polypropylene matrix and uniformly dispersed in the matrix, and significantly improves the mechanical properties of composites. The tensile strength of 2 wt% FeNip/PP composites reached 38 MPa, 23% higher than that of pure PP resin. The shielding performance of 20 wt% FeNip/PP composites reached 9.8 dB in the frequency range of 1-100 MHz.