Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al...Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al-7Si-0.7Mg alloy was modified with (Pr+Ce) addition. The needle-like eutectic silicon phase developed into rose form and the crystalline grains decreased in size and showed a high degree of spheroidization. When the amount of the (Pr+Ce) addition reached 0.6 wt.%, the mean diameter was 31.8μm (refined by 50%). The aspect ratio decreased to 1.35, and the tensile strength and ductility reached 192.4 MPa and 2.18%, respectively At higher levels of addition, over-modification occurred, as indicated by increased grain size and reduced mechanical properties. The poisoning effect of the (Pr+Ce) addition on eutectic silicon and the constitutional supercooling caused by the (Pr+Ce) addition were the major causes of alloy modification, grain refinement, and the improvement of mechanical properties.展开更多
基金Project supported by the National Natural Science Foundation of China(51364035)Ministry of Education tied up with the Special Research Fund for the Doctoral Program for Higher School(20133601110001)+1 种基金Loading Program of Science and Technology of College of Jiangxi Province(KJLD14003)Open Project Program of Jiangxi Engineering Research Center of Process and Equipment for New Energy,East China Institute of Technology(JXNE2015-09)
文摘Effects of (Pr+Ce) addition on the Al-7Si-0.7Mg alloy were investigated by optical microscope (OM), energy diffraction spectrum (EDS), X-ray diffraction (XRD) and tensile tests. The results showed that the Al-7Si-0.7Mg alloy was modified with (Pr+Ce) addition. The needle-like eutectic silicon phase developed into rose form and the crystalline grains decreased in size and showed a high degree of spheroidization. When the amount of the (Pr+Ce) addition reached 0.6 wt.%, the mean diameter was 31.8μm (refined by 50%). The aspect ratio decreased to 1.35, and the tensile strength and ductility reached 192.4 MPa and 2.18%, respectively At higher levels of addition, over-modification occurred, as indicated by increased grain size and reduced mechanical properties. The poisoning effect of the (Pr+Ce) addition on eutectic silicon and the constitutional supercooling caused by the (Pr+Ce) addition were the major causes of alloy modification, grain refinement, and the improvement of mechanical properties.