Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by origi...Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by original and modified SRK equation of state combined with MHV1 mixing rule and UNIFAC model, respectively. For 1447 saturated pressure points of 37 substance including alkanes; organics containing chlorine, fluorine, and oxygen; inorganic gases and water, the original SRK equation of state predicted pressure with an average deviation of 2.521% and modified one 1.673%. Binary vapor-liquid equilibria of alcohols containing mixtures and water containing mixtures also indicated that the SRK equation of state with the modified a had a better precision than that with the original one.展开更多
A simple extension of cubic equations of state(EOS)to polymer systems has been proposed.The So-ave-Redlich-Kwong(SRK)EOS was taken as a prototype to be used to describe the PVT behavior of polymer melts in a wide temp...A simple extension of cubic equations of state(EOS)to polymer systems has been proposed.The So-ave-Redlich-Kwong(SRK)EOS was taken as a prototype to be used to describe the PVT behavior of polymer melts in a wide temperature and pressure range.Combined with a modified Huron-Vidal gE-mixing rule it was applied for modeling vapor-liquid equilibria of polymer-solvent solutions and the solubility of supercritical gases in polymer melts.Satisfactory results are obtained.展开更多
In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed b...In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed by Heidemann and Khalil for calculating critical properties was used to compute critical points.An algorithm for determining the equilibrium phase of the critical point using the tangent plane criterion was developed,and was used to calculate the critical endpoints of different mixtures,including non-polar,polar and associating systems.The critical endpoint,representing the type of the phase behavior,was employed to fit the interaction parameter of mixtures in critical state at high pressure.Lines of critical endpoints for ternary mixtures were also determined with the algorithm.展开更多
For further improving the representation of mixture VLE data,the local composition version of CCORequation of state has been developed and tested on 42 sets low-pressure and high-pressure as well as polarand nonpolar ...For further improving the representation of mixture VLE data,the local composition version of CCORequation of state has been developed and tested on 42 sets low-pressure and high-pressure as well as polarand nonpolar VLE data.The data reduction results were compared with conventional quadratic mixing ruleand activity coefficient method.The comparison with quadratic mixing rule showed that the local composition version significantly im-proved the data fitting of polar systems,especially for those highly nonideal mixtures where quadratic mixingrule failed to fit satisfactorily.The comparison with the well-known activity coefficient method——Hayden-O’Connell-Wilson model,indicated that this new version gave,in general,better fit to those low-pressure strongly polar systems,which traditionally has to be treated by activity coefficient approach.展开更多
基于PR状态方程,结合四种不同混合规则,利用Heidemann和Khalil的临界性质计算方法,关联了二十一种不同二元体系的临界温度并预测了其临界压力,其中包括非极性、极性和缔合三类体系。对临界温度的关联结果表明,四种混合规则对所有体系均...基于PR状态方程,结合四种不同混合规则,利用Heidemann和Khalil的临界性质计算方法,关联了二十一种不同二元体系的临界温度并预测了其临界压力,其中包括非极性、极性和缔合三类体系。对临界温度的关联结果表明,四种混合规则对所有体系均适用。对临界压力的预测结果表明,四种混合规则中van der Waals-1及Panagiotopoulos-Reid混合规则对非极性-极性(四偶极)体系的估算精度高,而van der Waals-2和Sadus van derWaals-2混合规则更适用于非极性-非极性体系及极性-极性(四偶极)体系。对于缔合体系,随着组分缔合能力的增强,四种混合规则的预测误差均增大,除含1-丁醇及苯组分的体系外有待于寻找更合适的状态方程及混合规则。展开更多
文摘Based on results of saturated vapor pressures of pure substances calculated by SRK equation of state, the factor a in attractive pressure term was modified. Vapor-liquid equilibria of mixtures were calculated by original and modified SRK equation of state combined with MHV1 mixing rule and UNIFAC model, respectively. For 1447 saturated pressure points of 37 substance including alkanes; organics containing chlorine, fluorine, and oxygen; inorganic gases and water, the original SRK equation of state predicted pressure with an average deviation of 2.521% and modified one 1.673%. Binary vapor-liquid equilibria of alcohols containing mixtures and water containing mixtures also indicated that the SRK equation of state with the modified a had a better precision than that with the original one.
基金Supported by the Zhejiang Provincial Foundation for Returned Scholarsthe Scientific Research Foundation of the State Human Resource Ministry.
文摘A simple extension of cubic equations of state(EOS)to polymer systems has been proposed.The So-ave-Redlich-Kwong(SRK)EOS was taken as a prototype to be used to describe the PVT behavior of polymer melts in a wide temperature and pressure range.Combined with a modified Huron-Vidal gE-mixing rule it was applied for modeling vapor-liquid equilibria of polymer-solvent solutions and the solubility of supercritical gases in polymer melts.Satisfactory results are obtained.
文摘In the design of chemical processes,such as catalytic cracking of bitumen and heavy oil,the knowledge of phase behavior at the critical endpoint is essential.Based on the PR equation of state,the algorithm developed by Heidemann and Khalil for calculating critical properties was used to compute critical points.An algorithm for determining the equilibrium phase of the critical point using the tangent plane criterion was developed,and was used to calculate the critical endpoints of different mixtures,including non-polar,polar and associating systems.The critical endpoint,representing the type of the phase behavior,was employed to fit the interaction parameter of mixtures in critical state at high pressure.Lines of critical endpoints for ternary mixtures were also determined with the algorithm.
文摘For further improving the representation of mixture VLE data,the local composition version of CCORequation of state has been developed and tested on 42 sets low-pressure and high-pressure as well as polarand nonpolar VLE data.The data reduction results were compared with conventional quadratic mixing ruleand activity coefficient method.The comparison with quadratic mixing rule showed that the local composition version significantly im-proved the data fitting of polar systems,especially for those highly nonideal mixtures where quadratic mixingrule failed to fit satisfactorily.The comparison with the well-known activity coefficient method——Hayden-O’Connell-Wilson model,indicated that this new version gave,in general,better fit to those low-pressure strongly polar systems,which traditionally has to be treated by activity coefficient approach.
文摘基于PR状态方程,结合四种不同混合规则,利用Heidemann和Khalil的临界性质计算方法,关联了二十一种不同二元体系的临界温度并预测了其临界压力,其中包括非极性、极性和缔合三类体系。对临界温度的关联结果表明,四种混合规则对所有体系均适用。对临界压力的预测结果表明,四种混合规则中van der Waals-1及Panagiotopoulos-Reid混合规则对非极性-极性(四偶极)体系的估算精度高,而van der Waals-2和Sadus van derWaals-2混合规则更适用于非极性-非极性体系及极性-极性(四偶极)体系。对于缔合体系,随着组分缔合能力的增强,四种混合规则的预测误差均增大,除含1-丁醇及苯组分的体系外有待于寻找更合适的状态方程及混合规则。