A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in deta...A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.展开更多
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)...The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.展开更多
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
To understand the interface characteristics between the precipitateβ2and the Mg matrix,and thus guide the development of new Mg-Zn alloys,we investigated the atomic interface structure,work of adhesion(Wad),and inter...To understand the interface characteristics between the precipitateβ2and the Mg matrix,and thus guide the development of new Mg-Zn alloys,we investigated the atomic interface structure,work of adhesion(Wad),and interfacial energy(γ)of Mg(0001)/β2’(MgZn_(2))(0001)interface,as well as the effect of segregation behavior of the introduced transition metal atoms(3d,4d and 5d)on interfacial bonding strength.The calculated works of adhesion and interfacial energies dementated that the Zn2-terminated MT+HCP configuration is the most stable structure for all considered models.Take the Zn2-MT+HCP interface as the research object,estimated segregated energies(Eseg)reveal that added transition metal atoms prefer to segregate at Mg-I and Mg-II sites.The predicted Wad and charge density difference results reveal that the segregation of alloying additives employed may all strengthen Mg(0001)/MgZn_(2)(0001)interface,with the enhancement effect of Os,Re,Tc,W,and Ru at the Mg-II site being the most pronounced.展开更多
MgH_(2) and TiH_(2) have been extensively studied as potential anode materials due to their high theoretical specific capacities of 2036 and 1024 mAh/g,respectively.However,the large volume changes that these compound...MgH_(2) and TiH_(2) have been extensively studied as potential anode materials due to their high theoretical specific capacities of 2036 and 1024 mAh/g,respectively.However,the large volume changes that these compounds undergo during cycling affects their performance and limits practical applications.The present work demonstrates a novel approach to limiting the volume changes of active materials.This effect is based on mechanical support from an intimate interface generated in situ via the reaction between MgH_(2) and Ti within the electrode prior to lithiation to form Mg and TiH_(2).The resulting Mg can be transformed back to MgH_(2) by reaction with LiH during delithiation.In addition,the TiH_(2) improves the reaction kinetics of MgH_(2) and enhances electrochemical performance.The intimate interface produced in this manner is found to improve the electrochemical properties of a MgH_(2)-Ti-LiH electrode.An exceptional reversible capacity of 800 mAh/g is observed even after 200 cycles with a high current density of 1 mA/cm^(2) and a high proportion of active material(90 wt.%)at an operation temperature of 120℃.This study therefore showcases a new means of improving the performance of electrodes by limiting the volume changes of active materials.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc...Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically re...Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed.展开更多
High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS...High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles.展开更多
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c...The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.展开更多
Tin dioxide(SnO_(2))has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells(PSCs).However,scalable fabrication of SnO_(2) films with uniform coverage,desirabl...Tin dioxide(SnO_(2))has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells(PSCs).However,scalable fabrication of SnO_(2) films with uniform coverage,desirable thickness and a low defect density in perovskite solar mod-ules(PSMs)is still challenging.Here,we report preparation of high-quality large-area SnO_(2) films by chemical bath depo-sition(CBD)with the addition of KMnO_(4).The strong oxidiz-ing nature of KMnO_(4) promotes the conversion from Sn(II)to Sn(VI),leading to reduced trap defects and a higher carrier mobility of SnO_(2).In addition,K ions diffuse into the per-ovskite film resulting in larger grain sizes,passivated grain boundaries,and reduced hysteresis of PSCs.Furthermore,Mn ion doping improves both the crystallinity and the phase stability of the perovskite film.Such a multifunctional interface engineering strategy enabled us to achieve a power conversion efficiency(PCE)of 21.70% with less hysteresis for lab-scale PSCs.Using this method,we also fabricated 5×5 and 10×10 cm^(2) PSMs,which showed PCEs of 15.62% and 11.80%(active area PCEs are 17.26%and 13.72%),respectively.For the encapsulated 5×5 cm^(2) PSM,we obtained a T80 operation lifetime(the lifespan during which the solar module PCE drops to 80%of its initial value)exceeding 1000 h in ambient condition.展开更多
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,Mo...Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.展开更多
As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and slugg...As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.展开更多
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph...The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.展开更多
Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctiona...Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctional heterostructures.Herein,we present a metal-organic framework(MOF)-etching strategy to design free-standing and hierarchical hollow CoS_(2)-MoS_(2) heteronanosheet arrays for both HER and OER.Resulting from the controllable etching of MOF by MoO_(4)^(2-) and in-situ sulfuration,the obtained CoS_(2)-MoS_(2) possesses abundant heterointerfaces with modulated local charge distribution,which promote water dissociation and rapid electrocatalytic kinetics.Moreover,the two-dimensional hollow array architecture can not only afford rich surface-active sites,but also facilitate the penetration of electrolytes and the release of evolved H_(2)/O_(2) bubbles.Consequently,the engineered CoS_(2)-MoS_(2) heterostructure exhibits small overpotentials of 82 mV for HER and 266 mV for OER at 10 mA cm^(-2).The corresponding alkaline electrolyzer affords a cell voltage of 1.56 V at 10 mA cm^(-2) to boost overall water splitting,along with robust durability over 24 h, even surpassing the benchmark electrode couple composed of IrO_(2) and Pt/C The present work may provide valuable insights for developing MOF-derived heterogeneous electrocatalysts with tailored interface/surface structure for widespread application in catalysis and other energyrelated areas.展开更多
The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species...The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.展开更多
文摘A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52203261)Natural Science Foundation of Jiangsu Province(BK20210474)the project of research on the industrial application of"controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(N0.CJGJZD20210408092400002).
文摘The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030006)National Natural Science Foundation of China[Grant No.51871077]+2 种基金Shenzhen Knowledge Inno-vation Plan-Fundamental Research(Discipline Distribu-tion)[Grant No.JCYJ20180507184623297]Shenzhen Sci-ence and Technology Plan-Technology Innovation[Grant No.KQJSCX20180328165656256]Startup Foundation from Shenzhen and Startup Foundation from Harbin Institute of Technology(Shenzhen).
文摘To understand the interface characteristics between the precipitateβ2and the Mg matrix,and thus guide the development of new Mg-Zn alloys,we investigated the atomic interface structure,work of adhesion(Wad),and interfacial energy(γ)of Mg(0001)/β2’(MgZn_(2))(0001)interface,as well as the effect of segregation behavior of the introduced transition metal atoms(3d,4d and 5d)on interfacial bonding strength.The calculated works of adhesion and interfacial energies dementated that the Zn2-terminated MT+HCP configuration is the most stable structure for all considered models.Take the Zn2-MT+HCP interface as the research object,estimated segregated energies(Eseg)reveal that added transition metal atoms prefer to segregate at Mg-I and Mg-II sites.The predicted Wad and charge density difference results reveal that the segregation of alloying additives employed may all strengthen Mg(0001)/MgZn_(2)(0001)interface,with the enhancement effect of Os,Re,Tc,W,and Ru at the Mg-II site being the most pronounced.
基金supported in part by JSPS KAKENHI grants (nos. JP21K05243 and JP22H04621grants-in-aid for Scientific Research on Innovative Areas “Interface Ionics”)+1 种基金by a JST grant (no. JPMJFS2132,for the establishment of university fellowships toward the creation of science technology innovation)by the Suzuki foundation
文摘MgH_(2) and TiH_(2) have been extensively studied as potential anode materials due to their high theoretical specific capacities of 2036 and 1024 mAh/g,respectively.However,the large volume changes that these compounds undergo during cycling affects their performance and limits practical applications.The present work demonstrates a novel approach to limiting the volume changes of active materials.This effect is based on mechanical support from an intimate interface generated in situ via the reaction between MgH_(2) and Ti within the electrode prior to lithiation to form Mg and TiH_(2).The resulting Mg can be transformed back to MgH_(2) by reaction with LiH during delithiation.In addition,the TiH_(2) improves the reaction kinetics of MgH_(2) and enhances electrochemical performance.The intimate interface produced in this manner is found to improve the electrochemical properties of a MgH_(2)-Ti-LiH electrode.An exceptional reversible capacity of 800 mAh/g is observed even after 200 cycles with a high current density of 1 mA/cm^(2) and a high proportion of active material(90 wt.%)at an operation temperature of 120℃.This study therefore showcases a new means of improving the performance of electrodes by limiting the volume changes of active materials.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
文摘Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.
基金supported by the National Natural Science Foundation of China (22071172)the Ministry of Science and Technology of China (2016YFB0401100,2017YFA0204503,and 2018YFA0703200)Shandong Provincial Natural Science Foundation (No. ZR2019BB025)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed.
基金funding support from 1000 Talent Plan program(NO.31370086963030)research projects from Shandong Province(2018JMRH0211,2017CXGC1010 and 2016GGX104001)+2 种基金Taishan Scholar Program(11370085961006)the National Science Foundation of Shandong Province(ZR2017MEM002)the Fundamental Research Funds of Shandong University(201810422046,2017JC010,2017JC042,and 2016JC005)。
文摘High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles.
基金supported by the National Natural Science Foundation of China (NSFC)(22075201)the National Key Research and Development Program of China (2022YFB4101800)。
文摘The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.
基金supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate Universitythe OIST R&D Cluster Research Program,the OIST Proof of Concept(POC)ProgramJST A-STEP Grant Number JPMJTM20HS,Japan。
文摘Tin dioxide(SnO_(2))has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells(PSCs).However,scalable fabrication of SnO_(2) films with uniform coverage,desirable thickness and a low defect density in perovskite solar mod-ules(PSMs)is still challenging.Here,we report preparation of high-quality large-area SnO_(2) films by chemical bath depo-sition(CBD)with the addition of KMnO_(4).The strong oxidiz-ing nature of KMnO_(4) promotes the conversion from Sn(II)to Sn(VI),leading to reduced trap defects and a higher carrier mobility of SnO_(2).In addition,K ions diffuse into the per-ovskite film resulting in larger grain sizes,passivated grain boundaries,and reduced hysteresis of PSCs.Furthermore,Mn ion doping improves both the crystallinity and the phase stability of the perovskite film.Such a multifunctional interface engineering strategy enabled us to achieve a power conversion efficiency(PCE)of 21.70% with less hysteresis for lab-scale PSCs.Using this method,we also fabricated 5×5 and 10×10 cm^(2) PSMs,which showed PCEs of 15.62% and 11.80%(active area PCEs are 17.26%and 13.72%),respectively.For the encapsulated 5×5 cm^(2) PSM,we obtained a T80 operation lifetime(the lifespan during which the solar module PCE drops to 80%of its initial value)exceeding 1000 h in ambient condition.
基金This work was supported by the National Natural Science Foundation of China(No 51872334,51932011,51874326,51572299)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(2018JJ1036)the Independent exploration and innovation Project for graduate students of central south university(2019zzts049).
文摘Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.
基金supported by the National Natural Science Foundation of China(Grant No.U1904187 and 21501049)the Fund of Key Scientific and Technological Project of Henan Province(No.182102410081)the High Performance Computing Center of Henan Normal University。
文摘As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.
文摘The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.
基金the financial support by the National Natural Science Foundation of China(NSFC) Grants(51702295)。
文摘Rational coupling of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) catalysts is extremely important for practical overall water splitting,but it is still challenging to construct such bifunctional heterostructures.Herein,we present a metal-organic framework(MOF)-etching strategy to design free-standing and hierarchical hollow CoS_(2)-MoS_(2) heteronanosheet arrays for both HER and OER.Resulting from the controllable etching of MOF by MoO_(4)^(2-) and in-situ sulfuration,the obtained CoS_(2)-MoS_(2) possesses abundant heterointerfaces with modulated local charge distribution,which promote water dissociation and rapid electrocatalytic kinetics.Moreover,the two-dimensional hollow array architecture can not only afford rich surface-active sites,but also facilitate the penetration of electrolytes and the release of evolved H_(2)/O_(2) bubbles.Consequently,the engineered CoS_(2)-MoS_(2) heterostructure exhibits small overpotentials of 82 mV for HER and 266 mV for OER at 10 mA cm^(-2).The corresponding alkaline electrolyzer affords a cell voltage of 1.56 V at 10 mA cm^(-2) to boost overall water splitting,along with robust durability over 24 h, even surpassing the benchmark electrode couple composed of IrO_(2) and Pt/C The present work may provide valuable insights for developing MOF-derived heterogeneous electrocatalysts with tailored interface/surface structure for widespread application in catalysis and other energyrelated areas.
文摘The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.