In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction ...In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction of distributed scatterers in Distributed Scatterers InSAR(DS-InSAR)has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points.This study traces the history of DS-InSAR,presents the definition and characteristics of distributed scatterers,and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps:statistically homogeneous pixel selection and phase optimization.Additionally,the latest research progress in this field is tracked and the possible development direction in the future is discussed.Through simulation experiments and two real InSAR case studies,the proposed algorithms are compared and verified,and the advantages of DS-InSAR in deformation measurement practice are demonstrated.This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research.展开更多
This article focuses on reviewing the technologies of persistent scatterer interferometry (PSI), which has been often used to monitor the deformation of Earth surface. Three critical steps in the implementation of P...This article focuses on reviewing the technologies of persistent scatterer interferometry (PSI), which has been often used to monitor the deformation of Earth surface. Three critical steps in the implementation of PSI were introduced, i.e., (1) detection of persistent scatterer (PS), (2) construction of PS network, and (3) PSI modeling and solution. Finally, the main problems and outlooks on the PSI technique are discussed and given.展开更多
In DEM generation using interferometric synthetic aperture radar(InSAR),the ground control points(GCPs)for refinement and reflattening are usually selected by manual selection,field surveying,GPS points and existing b...In DEM generation using interferometric synthetic aperture radar(InSAR),the ground control points(GCPs)for refinement and reflattening are usually selected by manual selection,field surveying,GPS points and existing basemaps,which may not be completely suitable for consequent processes.We proposed a new method(auto-PS-GCP)of GCP selection based on permanent scatterers,which automatically defines the thresholds for the coherence,amplitude,and amplitude dispersion index to select permanent scatterer as the GCPs.The GCP thinning(auto-PS-GCP-Thin)was further conducted considering the point density,distances among points and terrain conditions.We used a three-stage assessment that includes:(1)phase stability and intensity of the GCPs,(2)RMSEs of the elevations between GCPs and homonymous points in the reference DEM,and(3)generated DEM accuracy.Three areas respectively in the plain,hilly and mountainous regions were selected to verify the proposed methods.The assessment using both SRTM DEM andICESat-2 points shows that the DEM accuracy of auto-PS-GCP-Thin was improved by 20%∼30%for different areas compared to the manual,where the best DEM accuracy of 4.71 m was found in the plain area.It is concluded that the proposed methods are effective and reliable in various areas with different terrain conditions.展开更多
基金National Natural Science Foundation of China(No.42374013)National Key Research and Development Program of China(Nos.2019YFC1509201,2021YFB3900604-03)。
文摘In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction of distributed scatterers in Distributed Scatterers InSAR(DS-InSAR)has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points.This study traces the history of DS-InSAR,presents the definition and characteristics of distributed scatterers,and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps:statistically homogeneous pixel selection and phase optimization.Additionally,the latest research progress in this field is tracked and the possible development direction in the future is discussed.Through simulation experiments and two real InSAR case studies,the proposed algorithms are compared and verified,and the advantages of DS-InSAR in deformation measurement practice are demonstrated.This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research.
基金supported by State Key Laboratory of Geodesy and Earth’s Dynamics(SKLGED2015-5-1-E)the Fundamental Research Funds for the Central Universities(2682015CX015)+1 种基金the National Natural Science Foundation of China(41474003)Program for Changjiang Scholars and Innovative Research Team in University(IRT13092)
文摘This article focuses on reviewing the technologies of persistent scatterer interferometry (PSI), which has been often used to monitor the deformation of Earth surface. Three critical steps in the implementation of PSI were introduced, i.e., (1) detection of persistent scatterer (PS), (2) construction of PS network, and (3) PSI modeling and solution. Finally, the main problems and outlooks on the PSI technique are discussed and given.
基金Supported by the National Key R&D Program of China(2021YFB3900105-2)the National Natural Science Foundation of China(42071371).
文摘In DEM generation using interferometric synthetic aperture radar(InSAR),the ground control points(GCPs)for refinement and reflattening are usually selected by manual selection,field surveying,GPS points and existing basemaps,which may not be completely suitable for consequent processes.We proposed a new method(auto-PS-GCP)of GCP selection based on permanent scatterers,which automatically defines the thresholds for the coherence,amplitude,and amplitude dispersion index to select permanent scatterer as the GCPs.The GCP thinning(auto-PS-GCP-Thin)was further conducted considering the point density,distances among points and terrain conditions.We used a three-stage assessment that includes:(1)phase stability and intensity of the GCPs,(2)RMSEs of the elevations between GCPs and homonymous points in the reference DEM,and(3)generated DEM accuracy.Three areas respectively in the plain,hilly and mountainous regions were selected to verify the proposed methods.The assessment using both SRTM DEM andICESat-2 points shows that the DEM accuracy of auto-PS-GCP-Thin was improved by 20%∼30%for different areas compared to the manual,where the best DEM accuracy of 4.71 m was found in the plain area.It is concluded that the proposed methods are effective and reliable in various areas with different terrain conditions.