The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the vol...The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load (100 N) and variable loads (from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced a-Fe coating. In addition, under constant load condition the friction coefficients (FCs) of two coatings increased first and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced a-Fe based coating increased gradually, while that of HVF MTC3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced a-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was difficult to be deformed and grooved.展开更多
In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding w...In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding were determined.The dataset comprised 99 different wear amount measurements obtained experimentally in the laboratory.The linear regression(LR),support vector machine(SVM),and Gaussian process regression(GPR)algorithms are used for predicting wear quantities.A success rate of 0.93 was obtained from the LR algorithm and 0.96 from the SVM and GPR algorithms.展开更多
基金Funded by the National Natural Science Fundation of China(No.51171116)the Ministry of Science and Technology of China(No.2009DFB50350)+1 种基金the Research Foundation of Education Bureau of Hubei Province,China(No.Q20122304)the Foundation of Hubei University of Automotive Technology,China(No.BK201205)
文摘The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load (100 N) and variable loads (from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced a-Fe coating. In addition, under constant load condition the friction coefficients (FCs) of two coatings increased first and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced a-Fe based coating increased gradually, while that of HVF MTC3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced a-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was difficult to be deformed and grooved.
文摘In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding were determined.The dataset comprised 99 different wear amount measurements obtained experimentally in the laboratory.The linear regression(LR),support vector machine(SVM),and Gaussian process regression(GPR)algorithms are used for predicting wear quantities.A success rate of 0.93 was obtained from the LR algorithm and 0.96 from the SVM and GPR algorithms.