The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,an...The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.展开更多
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each...An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.展开更多
Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b...Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.展开更多
The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification struct...The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.展开更多
Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking...Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimen- tal results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 lam and the reduction level was less than 60%.展开更多
In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte w...In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte was selected to make the current efficiency equal to 100%, and then the dissolved mass of samples was calculated according to Faraday's law(m=klt).Three representative samples were sampled by the electrolytic dissolution method and the calculated dissolved amounts were equal to the values by weighing the anode.The cxperimental results of zinc and copper in the anode liquor are in agreement with certified values.展开更多
A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the coppe...A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the copper side of the butt joints. In process of laser welding, effects of processing primary parameters on tensile strength of the joints were investigated. The interfacial characterizations of the joints were investigated by metallographic microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). The results showed that the element diffusion and solution occur and metallurgical bonding was achieved between pure copper and 304 stainless steel. The maximum tensile strength of the joints was 209 MPa when the laser power of welding was 2. 4 kW and welding speed was 12 mm/s.展开更多
To explain the reason why work hardening occurs in epoxy adhesive bonded zone of pure copper adherends after tensile shear strength testing, an elasto-plastic finite element model was established to analyze the effect...To explain the reason why work hardening occurs in epoxy adhesive bonded zone of pure copper adherends after tensile shear strength testing, an elasto-plastic finite element model was established to analyze the effect of different adherends thickness of 2mm and 4mm on the shear strength as well as the level of work hardening in copper adherends of single lap joint. The numerical simulation results show that the axial or equivalent stress overrun the yield strength of the pure copper adherend is the main reason why the work hardening occurs on the bonded zone of the adherends after the shear strength testing. The elasto-plastic finite element simulation results are agreed with the experimental ones. The thicker its adherends are, the more serious the work hardening is.展开更多
As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using...As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using optical microscopy(OM), scanning electronic microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and tensile test. The results showed that La had obvious effects on the solidification microstructure and the grain refinement of as-cast pure copper. With the increase of La content, the ultimate tensile strength, the yield strength and the microhardness increased gradually, but the elongation increased first and then decreased while La content exceeded 0.089 wt.%. The improvement of mechanical properties was attributed to the effect of grain refinement strengthening, solid solution strengthening, second phase strengthening and purifying. However, excessive adding La would deteriorate the elongation owing to the excessive Cu6 La phases.展开更多
In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate wa...In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on theadvancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for thealuminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWedjoints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopyand X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed jointswas investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formedin FSWed joints were A14Cu9 and AI2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatlydepended on the grain size, intermetallic compounds and copper pieces in SZ.展开更多
The influences of initial grain size(IGS)with 20μm and 50μm on the hot flow behavior and microstructural changes of pure copper were investigated using hot compression tests at a temperature range of 623–1073 K and...The influences of initial grain size(IGS)with 20μm and 50μm on the hot flow behavior and microstructural changes of pure copper were investigated using hot compression tests at a temperature range of 623–1073 K and strain rate range of 0.001–0.1 s^(-1).The effects of critical stress and corresponding critical strain were studied based on the internal and external processing parameters.The critical stress and strain decreased with increasing temperature and decreasing strain rate.The investigation results of the microstructure and true strain–stress diagrams showed that dynamic recovery,dynamic recrystallization(DRX),and twinning mechanisms were caused during the hot deformation of pure copper.Microstructure evolution indicated some DRXed fine-grain took place around grain boundary of hot deformed samples with IGS of 20μm whereas DRXed fine-grain took place in interior grains for samples with larger IGS.The results also showed that grain growth is also dependent on IGS as the grain growth rate for samples with the larger IGS is greater than the smaller IGS.The critical strain rate and the temperature were obtained at 0.01 s^(-1) and 973 K,respectively,for the sudden change in the grain growth rate.Also,twinning highly depended on IGS which almost did not happen in fine grain size while the volume fraction of twinning increased with increasing grain size.展开更多
By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop...By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop action' and rapid cooling were employed and a brass foil was used as a marker to show the material flow path. The grain structure along the material flow path was characterised using electron backscatter diffraction. Static recrystallization occurs for the work-hardened base material in the preheating stage in front of the tool In the acceleration flow stage, grains are significantly refined by plastic deforma-tion, discontinuous dynamic recrystallization, annealing twinning during the strain-induced boundary migration and slight continuous dynamic recrystallization. In the deceleration flow stage, due to a strain reversal, the grain first coarsens, and is thereafter refined again. Finally, the hot-deformed material in the shoulder-affected zone is ‘frozen’ directly whereas that in the probe-affected zone undergoes signif-icant annealing;thus, the recrystallized microstructure and 45°-rotated cube texture are obtained in the probe-affected zone.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an elem...The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an element. It is required that the oxide of this element must be morestable than Cu<sub>2</sub>O, i.e. its decomposition pressure is less than that of Cu<sub>2</sub>O. The more展开更多
In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52201099)the Scientific Research Starting Foundation of Anhui Polytechnic University,China(No.S022021004)+2 种基金Undergraduate Scientific Research Project of Anhui Polytechnic University,ChinaSchool Level Scientific Research Project of Anhui Polytechnic University,China(No.Xjky2022028)the Open Research Fund of Anhui Key Laboratory of High-Performance Non-ferrous Metal Materials,China(No.YSJS-2023-1)。
文摘The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.
基金Project(50871040)supported by the National Natural Science Foundation of ChinaProject(NCET-06-0741)supported by the Program for New Century Excellent Talents of China
文摘An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.
基金Project(12JCYBJC32100)supported by the Tianjin Research Program of Application Foundation and Advanced Technology,ChinaProject([2013]693)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.
基金The projects was supported by the Pre-research Foundation of the National Basic Research Program (973 Program, grant No. 2004CCA07000)the Science and Technology Committee of Shanghai Municipality (Grant No. 04XD14008).
文摘The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.
基金finically supported by the National Natural Science Foundation of China (No. 51474127)the Chinese Scholar Council (No. 201408210289)the Key Laboratory Open Project of Liaoning Province (USTLKFSY201504)
文摘Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimen- tal results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 lam and the reduction level was less than 60%.
文摘In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte was selected to make the current efficiency equal to 100%, and then the dissolved mass of samples was calculated according to Faraday's law(m=klt).Three representative samples were sampled by the electrolytic dissolution method and the calculated dissolved amounts were equal to the values by weighing the anode.The cxperimental results of zinc and copper in the anode liquor are in agreement with certified values.
文摘A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the copper side of the butt joints. In process of laser welding, effects of processing primary parameters on tensile strength of the joints were investigated. The interfacial characterizations of the joints were investigated by metallographic microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). The results showed that the element diffusion and solution occur and metallurgical bonding was achieved between pure copper and 304 stainless steel. The maximum tensile strength of the joints was 209 MPa when the laser power of welding was 2. 4 kW and welding speed was 12 mm/s.
文摘To explain the reason why work hardening occurs in epoxy adhesive bonded zone of pure copper adherends after tensile shear strength testing, an elasto-plastic finite element model was established to analyze the effect of different adherends thickness of 2mm and 4mm on the shear strength as well as the level of work hardening in copper adherends of single lap joint. The numerical simulation results show that the axial or equivalent stress overrun the yield strength of the pure copper adherend is the main reason why the work hardening occurs on the bonded zone of the adherends after the shear strength testing. The elasto-plastic finite element simulation results are agreed with the experimental ones. The thicker its adherends are, the more serious the work hardening is.
基金Project supported by Science Foundation of The Chinese Academy of Sciences
文摘As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using optical microscopy(OM), scanning electronic microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and tensile test. The results showed that La had obvious effects on the solidification microstructure and the grain refinement of as-cast pure copper. With the increase of La content, the ultimate tensile strength, the yield strength and the microhardness increased gradually, but the elongation increased first and then decreased while La content exceeded 0.089 wt.%. The improvement of mechanical properties was attributed to the effect of grain refinement strengthening, solid solution strengthening, second phase strengthening and purifying. However, excessive adding La would deteriorate the elongation owing to the excessive Cu6 La phases.
文摘In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on theadvancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for thealuminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWedjoints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopyand X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed jointswas investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formedin FSWed joints were A14Cu9 and AI2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatlydepended on the grain size, intermetallic compounds and copper pieces in SZ.
文摘The influences of initial grain size(IGS)with 20μm and 50μm on the hot flow behavior and microstructural changes of pure copper were investigated using hot compression tests at a temperature range of 623–1073 K and strain rate range of 0.001–0.1 s^(-1).The effects of critical stress and corresponding critical strain were studied based on the internal and external processing parameters.The critical stress and strain decreased with increasing temperature and decreasing strain rate.The investigation results of the microstructure and true strain–stress diagrams showed that dynamic recovery,dynamic recrystallization(DRX),and twinning mechanisms were caused during the hot deformation of pure copper.Microstructure evolution indicated some DRXed fine-grain took place around grain boundary of hot deformed samples with IGS of 20μm whereas DRXed fine-grain took place in interior grains for samples with larger IGS.The results also showed that grain growth is also dependent on IGS as the grain growth rate for samples with the larger IGS is greater than the smaller IGS.The critical strain rate and the temperature were obtained at 0.01 s^(-1) and 973 K,respectively,for the sudden change in the grain growth rate.Also,twinning highly depended on IGS which almost did not happen in fine grain size while the volume fraction of twinning increased with increasing grain size.
基金partly supported by the New Energy and Industrial Technology Development Organization (NEDO) under the “Innovation Structural Materials Project (Future Pioneering Projects)”a Grant-in-Aid for Science Research from the Japan Society for the Promotion of Science
文摘By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop action' and rapid cooling were employed and a brass foil was used as a marker to show the material flow path. The grain structure along the material flow path was characterised using electron backscatter diffraction. Static recrystallization occurs for the work-hardened base material in the preheating stage in front of the tool In the acceleration flow stage, grains are significantly refined by plastic deforma-tion, discontinuous dynamic recrystallization, annealing twinning during the strain-induced boundary migration and slight continuous dynamic recrystallization. In the deceleration flow stage, due to a strain reversal, the grain first coarsens, and is thereafter refined again. Finally, the hot-deformed material in the shoulder-affected zone is ‘frozen’ directly whereas that in the probe-affected zone undergoes signif-icant annealing;thus, the recrystallized microstructure and 45°-rotated cube texture are obtained in the probe-affected zone.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
文摘The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an element. It is required that the oxide of this element must be morestable than Cu<sub>2</sub>O, i.e. its decomposition pressure is less than that of Cu<sub>2</sub>O. The more
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.