Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detecti...Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detection and diagnosis methods for hybrid renewable energy systems consisting of a wind turbine power generator, a PV (photovoltaic) array, a PEM (polymer electrolyte membrane) fuel cell and a battery storage system. The need of batteries to store the generated power from the solar panel, wind turbine or PEM fuel cell is also emphasized. Finally, an overview of the current methods used in the diagnosing of the lead-acid battery degradation is given.展开更多
While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent p...While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.展开更多
文摘Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detection and diagnosis methods for hybrid renewable energy systems consisting of a wind turbine power generator, a PV (photovoltaic) array, a PEM (polymer electrolyte membrane) fuel cell and a battery storage system. The need of batteries to store the generated power from the solar panel, wind turbine or PEM fuel cell is also emphasized. Finally, an overview of the current methods used in the diagnosing of the lead-acid battery degradation is given.
文摘While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.