Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion...Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-...Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.展开更多
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co...As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.展开更多
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG...为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。展开更多
This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is ...This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is required to stabilize hybrid systems and extend battery lifetimes. The battery management unit is divided into three main stages. Firstly, analysis of the basic components of the battery type used in the system is considered. Secondly, the state of charge (SOC) estimation method and the deterioration factor of the battery are analyzed. Finally, the overall battery management system, including a computer-based measurement and control unit, is constructed. The control system displays real-time information through LabVIEW 8.5 by estimating the state of charge through various measurements. The system will issue alerts when malfunctions are detected, and the operator can analyze and react to the system in real time to stabilize the system and extend the battery lifetime.展开更多
With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs ha...With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.展开更多
The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power sup...The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power supply equipment.For Zn based hybrid battery,an efficient cathode material with high specific capacitance and excellent ORR,OER activities is a vital component,which determines its performance in great extent.In this work,with Co based coordination polymer as precursor,oxygen vacancy-rich Co3 O4 based cathode material is synthesized.In this material Co3O4 particles with the size about 20 to 35 nm reside evenly in mesoporous carbon matrix doped by nitrogen atoms.In OER,the overpotential of this cathode material is merely 330 m V.Its ORR proceeds with a typical four electron process with half wave achieving 0.76 V.If charge/discharge at 1 A·g^-1,specific capacitance of this cathode material is 254.4 mAh·g^-1.As current density increases to 20 A·g^-1,the specific capacitance still arrives at 122.5 mAh·g^-1 with nearly 50%retained.Based on attractive performance of this cathode material,Zn based hybrid battery is assembled.When discharge at 1 m A·cm-2,it presences two voltage platforms at 1.71 and 1.14 V.In this situation,specific capacitance reaches 790 m Ah·g^-1 with energy density 928 Wh·kg^-1.Hybrid battery shows promising stability after 300-cycle continuous test.展开更多
Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Her...Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries.展开更多
Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode si...Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability.展开更多
In order to optimize and select the appropriate binder to improve the electrochemical performance of aqueous zinc-manganese batteries,the influences of water-soluble binders and oil-based binders on the zinc storage p...In order to optimize and select the appropriate binder to improve the electrochemical performance of aqueous zinc-manganese batteries,the influences of water-soluble binders and oil-based binders on the zinc storage performance of manganese-based cathode materials were systematically investigated.The results show that the water-soluble binders with large numbers of hydroxyl and carboxyl groups are easily soluble in aqueous electrolytes,leading to poor electrochemical performance.Fortunately,the cathodes with polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP)binder display high specific capacity of 264.9 mA·h/g and good capacity retention of 92%after 90 cycles at 100 mA/g.Meanwhile,PVDF-HFP binder with plenty of hydrophobic groups presents excellent ability in inhibiting cracks on the surface of electrode,reducing voltage polarization and charge transfer resistance,as well as maintaining electrode integrity.展开更多
Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electroly...Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy.展开更多
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga...Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.展开更多
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ...With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs.展开更多
基金financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Scientific Research Innovation Project of Graduate School of South China Normal University(2024KYLX047)financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technology.
文摘Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金financial support provided by National Natural Science Foundation of China(52303283,52372232,52064049)the Major Science and Technology Projects of Yunnan Province(202302AB080019-3)+2 种基金National Natural Science Foundation of Yunnan Province(202301AS070040,202401AU070201)the Analysis and Measurements Center of Yunnan University for the sample testing servicethe Electron Microscope Center of Yunnan University for the support of this work.
文摘Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
基金financially supported by National Natural Science Foundation of China (No. 51672083)Program of Shanghai Academic/Technology Research Leader (18XD1401400)+3 种基金Basic Research Program of Shanghai (17JC1404702)Leading talents in Shanghai in 2018The 111 project (B14018)the Fundamental Research Funds for the Central Universities (222201718002)
文摘As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.
文摘为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。
文摘This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is required to stabilize hybrid systems and extend battery lifetimes. The battery management unit is divided into three main stages. Firstly, analysis of the basic components of the battery type used in the system is considered. Secondly, the state of charge (SOC) estimation method and the deterioration factor of the battery are analyzed. Finally, the overall battery management system, including a computer-based measurement and control unit, is constructed. The control system displays real-time information through LabVIEW 8.5 by estimating the state of charge through various measurements. The system will issue alerts when malfunctions are detected, and the operator can analyze and react to the system in real time to stabilize the system and extend the battery lifetime.
基金support from the National Natural Science Foundation of China(No.91963118)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.
基金supported by the National Natural Science Foundation of China(21303010)Fundamental Research Funds for the Central University(N170504025)。
文摘The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power supply equipment.For Zn based hybrid battery,an efficient cathode material with high specific capacitance and excellent ORR,OER activities is a vital component,which determines its performance in great extent.In this work,with Co based coordination polymer as precursor,oxygen vacancy-rich Co3 O4 based cathode material is synthesized.In this material Co3O4 particles with the size about 20 to 35 nm reside evenly in mesoporous carbon matrix doped by nitrogen atoms.In OER,the overpotential of this cathode material is merely 330 m V.Its ORR proceeds with a typical four electron process with half wave achieving 0.76 V.If charge/discharge at 1 A·g^-1,specific capacitance of this cathode material is 254.4 mAh·g^-1.As current density increases to 20 A·g^-1,the specific capacitance still arrives at 122.5 mAh·g^-1 with nearly 50%retained.Based on attractive performance of this cathode material,Zn based hybrid battery is assembled.When discharge at 1 m A·cm-2,it presences two voltage platforms at 1.71 and 1.14 V.In this situation,specific capacitance reaches 790 m Ah·g^-1 with energy density 928 Wh·kg^-1.Hybrid battery shows promising stability after 300-cycle continuous test.
基金supported by the National Natural Science Foundation of China(Grant No.21805016 and Grant No.51572037)the Natural Science Foundation of Jiangsu Province of China(No.BK20180961)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.18KJD530001 and Grant No.18KJB430004)the Key Research and Development Project of Jiangsu Province(Grant No.BE2017006-3)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries.
基金supported by the National Natural Science Foundation of China(Grant No.21875071)the Guangzhou Scientific and Technological Planning Project(Grant No.201704030061)the Guangdong Key R&D Program of China(Grant No.2019B090908001)。
文摘Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability.
基金supported by the National Natural Science Foundation of China (Nos.51932011, 51972346)the Hunan Natural Science Fund for Distinguished Young Scholar, China (No. 2021JJ10064)+1 种基金the Program of Youth Talent Support for Hunan Province, China (No. 2020RC3011)the Innovation-Driven Project of Central South University, China (No. 2020CX024)
文摘In order to optimize and select the appropriate binder to improve the electrochemical performance of aqueous zinc-manganese batteries,the influences of water-soluble binders and oil-based binders on the zinc storage performance of manganese-based cathode materials were systematically investigated.The results show that the water-soluble binders with large numbers of hydroxyl and carboxyl groups are easily soluble in aqueous electrolytes,leading to poor electrochemical performance.Fortunately,the cathodes with polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP)binder display high specific capacity of 264.9 mA·h/g and good capacity retention of 92%after 90 cycles at 100 mA/g.Meanwhile,PVDF-HFP binder with plenty of hydrophobic groups presents excellent ability in inhibiting cracks on the surface of electrode,reducing voltage polarization and charge transfer resistance,as well as maintaining electrode integrity.
基金supported by National Natural Science Foundation of China(22103030,22073112)Youth Topnotch Talent Program of Hebei Institution of Higher Learning(BJ2021057)for financial support.
文摘Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy.
基金supported by the National Key R&D Program-Strategic Scientific and Technological Innovation Cooperation(Grant No.2022YFE0207900)the National Natural Science Foundation of China(Grant Nos.51706117,52076121)。
文摘Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
基金Y.X.acknowledges the financial support of the Engineering and Physical Sciences Research Council(EP/X000087/1,EP/V000152/1)Leverhulme Trust(RPG-2021-138)Royal Society(IEC\NSFC\223016).
文摘With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs.