This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is ...This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is required to stabilize hybrid systems and extend battery lifetimes. The battery management unit is divided into three main stages. Firstly, analysis of the basic components of the battery type used in the system is considered. Secondly, the state of charge (SOC) estimation method and the deterioration factor of the battery are analyzed. Finally, the overall battery management system, including a computer-based measurement and control unit, is constructed. The control system displays real-time information through LabVIEW 8.5 by estimating the state of charge through various measurements. The system will issue alerts when malfunctions are detected, and the operator can analyze and react to the system in real time to stabilize the system and extend the battery lifetime.展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
To provide guidance for photovoltaic(PV)system integration in net-zero distribution systems(DSs),this paper proposes an analytical method for delineating the feasible region for PV integration capacities(PVICs),where ...To provide guidance for photovoltaic(PV)system integration in net-zero distribution systems(DSs),this paper proposes an analytical method for delineating the feasible region for PV integration capacities(PVICs),where the impact of battery energy storage system(BESS)flexibility is considered.First,we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements,which form the upper and lower bounds of the feasible region.Then,the formulation and solution of the feasible region is proposed.The resulting analytical expression is a set of linear inequalities,illustrating that the feasible region is a polyhedron in a high-dimensional space.A procedure is designed to verify and adjust the feasible region,ensuring that it satisfies network loss constraints under alternating current(AC)power flow.Case studies on the 4-bus system,the IEEE 33-bus system,and the IEEE 123-bus system verify the effectiveness of the proposed method.It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs,loads,and BESSs,while also quantifying the impact of this relationship on the boundaries of the feasible region.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
铁路功率调节器(Railway Power Conditioner,RPC)既能作为光储系统接入牵引供电系统的端口,也能够有效解决柔性牵引供电系统中谐波及无功等电能质量问题。文章提出了一种考虑动态特性的RPC接入型柔性高速铁路牵引供电系统无功补偿及谐...铁路功率调节器(Railway Power Conditioner,RPC)既能作为光储系统接入牵引供电系统的端口,也能够有效解决柔性牵引供电系统中谐波及无功等电能质量问题。文章提出了一种考虑动态特性的RPC接入型柔性高速铁路牵引供电系统无功补偿及谐波治理方法。分析了牵引供电系统负序电流成因及RPC的基本工作原理,搭建了基于RPC接入的含光储柔性牵引供电系统,并开展了仿真分析。结果表明,所提出的考虑动态特性的RPC接入型柔性高速铁路牵引供电系统无功补偿及谐波治理方法,能够在电压、电流、功率因数、不平衡电流方面显著改善牵引供电系统的电能质量问题,提升系统的动态特性。展开更多
This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW ph...This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.展开更多
Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration...Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.展开更多
Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sourc...Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sources such as solar energy are green and promising energy in the future for widespread use. Combining renewable energy sources with battery makes electricity supply more economical and reliable to meet all possible load level. This paper proposed a new hybrid method to optimize Photovoltaic (PV)-Battery systems. The proposed method was named Interval type-2 fuzzy adaptive genetic algorithm (IT2FAGA). Genetic algorithm (GA) is one of modern optimization techniques that has been successfully applied in various areas of power systems. To enhance the ability of GA to prevent trapping in? local optima and increase convergence in a global optima, the crossover probability (pcross) and the mutation probability (pmut), parameters in GA, are tuned using interval type-2 fuzzy logic (IT2FL). Objective function used in this paper was the annual cost of sytem (ACS) consisting of the annual capital cost (ACC), annual replacement cost (ARC), annual operation cost maintenance (AOM). The proposed method was also compared to fuzzy adaptive genetic algorithm (FGA) and standard genetic algorithm (SGA). Simulation results indicated that the展开更多
One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and ...One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and nonlinear loads, as a result of the fast development and growth of power electronics application, power quality becomes more important since it introduces harmonics to the power system. This paper presents a power quality study to the isolated northwest grid of Saudi Arabia in presence of PV system and battery storage. Moreover, the study includes nonlinear loads for more analysis regarding harmonics penetration and the design procedure for passive filters to eliminate the harmonics.展开更多
This paper proposes an economic performance optimization strategy for a PV plant coupled with a battery energy storage system. The case study of La Reunion Island, a non-interconnected zone (NIZ) with a high level of ...This paper proposes an economic performance optimization strategy for a PV plant coupled with a battery energy storage system. The case study of La Reunion Island, a non-interconnected zone (NIZ) with a high level of renewable energy sources (RES), is considered. This last decade, to reach the ambitious target of electricity autonomy by 2030 set by the local authorities, local and national plans have been launched to promote renewable energy sources integration that led to a noticeable development of photovoltaic (PV) systems. To avoid a decrease of the grid reliability due to a large integration of intermittent energy sources into a non-interconnected grid, the authorities have introduced new regulatory rules for RES producers. The proposed optimization strategy relies on these new regulatory rules and takes into account the energy market data, the amount of PV production subject to penalties for imbalance, the batteries and the PV technological characteristics together with a PV production forecast model. Due to its high convergence rate to the true global minimum and its perfect suitability to practical engineering optimization problems, the recently developed Modified Cuckoo Search algorithm is used as optimization algorithm. The effectiveness and relevance of the proposed strategy are assessed on experimental data collected on a real PV power plant. An economical analysis demonstrates that the proposed optimization strategy is able to fulfill the new regulatory rules requirements while increasing the economic performance of the system.展开更多
文摘This paper presents a real-time battery management unit designed by applying the Coulomb counting method and intended for use in an integrated renewable energy system for PV-Hybrid power supply. Battery management is required to stabilize hybrid systems and extend battery lifetimes. The battery management unit is divided into three main stages. Firstly, analysis of the basic components of the battery type used in the system is considered. Secondly, the state of charge (SOC) estimation method and the deterioration factor of the battery are analyzed. Finally, the overall battery management system, including a computer-based measurement and control unit, is constructed. The control system displays real-time information through LabVIEW 8.5 by estimating the state of charge through various measurements. The system will issue alerts when malfunctions are detected, and the operator can analyze and react to the system in real time to stabilize the system and extend the battery lifetime.
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
基金supported by the Natural Science Foundation of Tianjin(No.22JCZDJC00820)。
文摘To provide guidance for photovoltaic(PV)system integration in net-zero distribution systems(DSs),this paper proposes an analytical method for delineating the feasible region for PV integration capacities(PVICs),where the impact of battery energy storage system(BESS)flexibility is considered.First,we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements,which form the upper and lower bounds of the feasible region.Then,the formulation and solution of the feasible region is proposed.The resulting analytical expression is a set of linear inequalities,illustrating that the feasible region is a polyhedron in a high-dimensional space.A procedure is designed to verify and adjust the feasible region,ensuring that it satisfies network loss constraints under alternating current(AC)power flow.Case studies on the 4-bus system,the IEEE 33-bus system,and the IEEE 123-bus system verify the effectiveness of the proposed method.It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs,loads,and BESSs,while also quantifying the impact of this relationship on the boundaries of the feasible region.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
文摘铁路功率调节器(Railway Power Conditioner,RPC)既能作为光储系统接入牵引供电系统的端口,也能够有效解决柔性牵引供电系统中谐波及无功等电能质量问题。文章提出了一种考虑动态特性的RPC接入型柔性高速铁路牵引供电系统无功补偿及谐波治理方法。分析了牵引供电系统负序电流成因及RPC的基本工作原理,搭建了基于RPC接入的含光储柔性牵引供电系统,并开展了仿真分析。结果表明,所提出的考虑动态特性的RPC接入型柔性高速铁路牵引供电系统无功补偿及谐波治理方法,能够在电压、电流、功率因数、不平衡电流方面显著改善牵引供电系统的电能质量问题,提升系统的动态特性。
文摘This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.
基金Supported by the National Program of International S&T Cooperation(No.2014DFE60020)Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.
文摘Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sources such as solar energy are green and promising energy in the future for widespread use. Combining renewable energy sources with battery makes electricity supply more economical and reliable to meet all possible load level. This paper proposed a new hybrid method to optimize Photovoltaic (PV)-Battery systems. The proposed method was named Interval type-2 fuzzy adaptive genetic algorithm (IT2FAGA). Genetic algorithm (GA) is one of modern optimization techniques that has been successfully applied in various areas of power systems. To enhance the ability of GA to prevent trapping in? local optima and increase convergence in a global optima, the crossover probability (pcross) and the mutation probability (pmut), parameters in GA, are tuned using interval type-2 fuzzy logic (IT2FL). Objective function used in this paper was the annual cost of sytem (ACS) consisting of the annual capital cost (ACC), annual replacement cost (ARC), annual operation cost maintenance (AOM). The proposed method was also compared to fuzzy adaptive genetic algorithm (FGA) and standard genetic algorithm (SGA). Simulation results indicated that the
文摘One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and nonlinear loads, as a result of the fast development and growth of power electronics application, power quality becomes more important since it introduces harmonics to the power system. This paper presents a power quality study to the isolated northwest grid of Saudi Arabia in presence of PV system and battery storage. Moreover, the study includes nonlinear loads for more analysis regarding harmonics penetration and the design procedure for passive filters to eliminate the harmonics.
文摘This paper proposes an economic performance optimization strategy for a PV plant coupled with a battery energy storage system. The case study of La Reunion Island, a non-interconnected zone (NIZ) with a high level of renewable energy sources (RES), is considered. This last decade, to reach the ambitious target of electricity autonomy by 2030 set by the local authorities, local and national plans have been launched to promote renewable energy sources integration that led to a noticeable development of photovoltaic (PV) systems. To avoid a decrease of the grid reliability due to a large integration of intermittent energy sources into a non-interconnected grid, the authorities have introduced new regulatory rules for RES producers. The proposed optimization strategy relies on these new regulatory rules and takes into account the energy market data, the amount of PV production subject to penalties for imbalance, the batteries and the PV technological characteristics together with a PV production forecast model. Due to its high convergence rate to the true global minimum and its perfect suitability to practical engineering optimization problems, the recently developed Modified Cuckoo Search algorithm is used as optimization algorithm. The effectiveness and relevance of the proposed strategy are assessed on experimental data collected on a real PV power plant. An economical analysis demonstrates that the proposed optimization strategy is able to fulfill the new regulatory rules requirements while increasing the economic performance of the system.