A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is ...A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.展开更多
Tunneling-based static random-access memory(SRAM)devices have been developed to fulfill the demands of high density and low power,and the performance of SRAMs has also been greatly promoted.However,for a long time,the...Tunneling-based static random-access memory(SRAM)devices have been developed to fulfill the demands of high density and low power,and the performance of SRAMs has also been greatly promoted.However,for a long time,there has not been a silicon based tunneling device with both high peak valley current ratio(PVCR)and practicality,which remains a gap to be filled.Based on the existing work,the current manuscript proposed the concept of a new silicon-based tunneling device,i.e.,the silicon crosscoupled gated tunneling diode(Si XTD),which is quite simple in structure and almost completely compatible with mainstream technology.With technology computer aided design(TCAD)simulations,it has been validated that this type of device not only exhibits significant negative-differential-resistance(NDR)behavior with PVCRs up to 10^(6),but also possesses reasonable process margins.Moreover,SPICE simulation showed the great potential of such devices to achieve ultralow-power tunneling-based SRAMs with standby power down to 10^(−12)W.展开更多
文摘A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2800304.
文摘Tunneling-based static random-access memory(SRAM)devices have been developed to fulfill the demands of high density and low power,and the performance of SRAMs has also been greatly promoted.However,for a long time,there has not been a silicon based tunneling device with both high peak valley current ratio(PVCR)and practicality,which remains a gap to be filled.Based on the existing work,the current manuscript proposed the concept of a new silicon-based tunneling device,i.e.,the silicon crosscoupled gated tunneling diode(Si XTD),which is quite simple in structure and almost completely compatible with mainstream technology.With technology computer aided design(TCAD)simulations,it has been validated that this type of device not only exhibits significant negative-differential-resistance(NDR)behavior with PVCRs up to 10^(6),but also possesses reasonable process margins.Moreover,SPICE simulation showed the great potential of such devices to achieve ultralow-power tunneling-based SRAMs with standby power down to 10^(−12)W.