Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious m...Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.展开更多
Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome t...Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome these issues,a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study.Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam,due to the coupling property of the combined structure.This results in the production of elliptical motions in the two driving rings to achieve the drive function.An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer.Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model.Besides,the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring.Additionally,application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system.Experimental results indicated that 1)the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments;2)motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N,at the excitation voltage of 500 V_(RMS).These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.展开更多
There are two kinds of piezoelectric pumps:check valve pumps and valve-less pumps.Whether to use a check valve or not depends upon the application occasion.To achieve large backpressure for higher flow rates,the pump ...There are two kinds of piezoelectric pumps:check valve pumps and valve-less pumps.Whether to use a check valve or not depends upon the application occasion.To achieve large backpressure for higher flow rates,the pump with check valve is desirable.However,adding check valves implies more complex structure and higher probability of valve blocking,etc.In order to solve the problem,effective driving and transport mechanics with compact construction and reliable service are being sought.In this paper,using the second-order longitudinal vibration mode of a bar-shaped piezoelectric vibrator for driving fluid,a piezoelectric pump is successfully made.The proposed piezoelectric pump consists of coaxial cylindrical shells and a bar-shaped piezoelectric vibrator,which has a disk part and a cone part.The lead zirconium titanate ceramic rings fixed in the vibrator are polarized along the thickness direction.When the second-order longitudinal vibration of the vibrator along its axis is excited,the disk part of the vibrator changes periodically the volume of the chamber and the cone part acts as a pin valve,driving the fluid from the inlet port to the outlet port.Finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software ANSYS.Components of the piezoelectric pump were manufactured,assembled,and tested for flow rate and backpressure to validate the concepts of the proposed pump and confirm the simulation results of modal and harmonic analyses.The test results show that the performance of the proposed piezoelectric pump is about 910 mL/min in flow rate with a highest pressure level of 1.5 kPa under 400 V peak-to-peak voltage and 51.7 kHz operating frequency.It is confirmed that this bar-shaped piezoelectric transducer can be effectively applied in fluid transferring mechanism of pump through this research.展开更多
An orthogonal ultrasonic irradiation system consisting of HIFU with frequency at 1.05 MHz combined with ultrasound with frequency at 28 kHz was applied in this paper.Effect of cavitation was detected by pH-value measu...An orthogonal ultrasonic irradiation system consisting of HIFU with frequency at 1.05 MHz combined with ultrasound with frequency at 28 kHz was applied in this paper.Effect of cavitation was detected by pH-value measurement and conductance measurement.The result shows that the effect of cavitation caused by ultrasound with frequency at 28 kHz is greatly enhanced by HIFU piezoelectricity transducer with frequency at 1.05 MHz.展开更多
The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in t...The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in the paper. Only a time-harmonic voltage is applied across two electrodes of the piezoelectric shell as the external loading. A theoretical solution was obtained using the classical shell theory. Based on the solution, basic vibration characteristics of resonant frequencies, mode shapes were calculated and examined.展开更多
The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)tr...The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.展开更多
In recent years,shear horizontal(SH)waves are being paid more and more attention to in structural health monitoring as it has only one displacement component.In this paper,a unidirectional SH wave transducer based on ...In recent years,shear horizontal(SH)waves are being paid more and more attention to in structural health monitoring as it has only one displacement component.In this paper,a unidirectional SH wave transducer based on phase-controlled antiparallel thickness-shear(d15)piezoelectric strips(APS)is proposed.Here two pairs of identical APS were used each of which is a bidirectional SH wave transducer.By setting the interval between the two pairs of APS as 1/4 wavelength and the excitation delay between them as 1/4 period of the central operating frequency,unidirectional SH waves can be excited.Both finite element simulations and experiments were performed to validate the proposed design.Results show that SH0 waves were successfully excited only along one direction and those along the unwanted directions were suppressed very well.The proposed unidirectional SH wave transducer is very helpful to study the fundamentals and applications of SH waves.展开更多
In this study the relation between the generated open circuit output voltages of the piezoelectric ceramics Cymbal transducers with applied impact mechanical energy is studied. The output voltages of piezoelectric cer...In this study the relation between the generated open circuit output voltages of the piezoelectric ceramics Cymbal transducers with applied impact mechanical energy is studied. The output voltages of piezoelectric ceramics Cymbal transducers are increased with the increasing of the applied mechanical energy. Under the same impact mechanical energy, the generated open circuit output voltages of the piezoelectric ceramics Cymbal transducer is much higher than that of uncapped piezoelectric ceramics disk alone. The generated open circuit output voltages of the piezoelectric ceramics Cymbal transducer depend on the geometry parameters and the metal thickness of end-cap. The generated open circuit voltage of piezoelectric ceramics Cymbal transducer with thick metal thickness is small than that with thin metal thickness.展开更多
Abstract: A new type of piezoelectric transducer with compression/shear sense is developed and was successfully tested for measuring three dimension accelerations in shock and vibration experiment.
Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming metho...Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces.展开更多
To improve the performance of ultrasonic transducer, the samples of PZT were improved by doping. The doped PZT was observed and analyzed from the following aspects: the crystal phase structures, the surface morpholog...To improve the performance of ultrasonic transducer, the samples of PZT were improved by doping. The doped PZT was observed and analyzed from the following aspects: the crystal phase structures, the surface morphologies and the dielectric constant. According to the transducer parameter requirements for ultrasonic machining, there are also requirements for the parameters of piezoelectric ceramics. The high performance PZT was prepared by doping the elements of Ga, Ba, Nb, Sn, and Sr in PZT. The doped PZT is suitable for power ultrasonic machining at 20 kHz through analysis using X-ray diffraction(XPD), a scanning electron microscope(SEM) and LCR meter. Therefore, the excellent performance of transducer for power ultrasonic machining is guaranteed.展开更多
PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructu...PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.展开更多
PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis....PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.展开更多
We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT t...We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT thin film was changed from (001) to (110) as the deposition temperature increased. The surface roughness of PZT thin films decreased with the increase of deposition temperature. The maximum amplitude of the piezoelectric response of PZT thin films decreased till the deposition temperature increased to 350°C. This tendency seems to be due to the change of the preferred orientation form (001) to (110). At over 450°C, this maximum value decreased due to both the increase of the surface roughness and the degradation of the crystallinity.展开更多
To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments...To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.展开更多
Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are stud...Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.展开更多
基金The study is financially supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(Grant No.51627812)the National Natural Science Foundation of China(Grant No.52078181)the Natural Science Foundation of Hebei Province,China(Grant No.E2019202484)。
文摘Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.
基金Supported by the National Science Foundation of China(Grants Nos.51905262 and U2037603)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190398)the State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202011).
文摘Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals,leading to a complex control system and seriously limiting their applications in industry.To overcome these issues,a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study.Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam,due to the coupling property of the combined structure.This results in the production of elliptical motions in the two driving rings to achieve the drive function.An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer.Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model.Besides,the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring.Additionally,application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system.Experimental results indicated that 1)the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments;2)motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N,at the excitation voltage of 500 V_(RMS).These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.
基金supported by National Basic Research Program (973 Program, Grant No. 2011CB707602)National Natural Science Foundation of China (Grant No. 10874090, Grant No. 91023020)National Natural Science Foundation of China Guangdong Joint Fund (Grant No. U0934004)
文摘There are two kinds of piezoelectric pumps:check valve pumps and valve-less pumps.Whether to use a check valve or not depends upon the application occasion.To achieve large backpressure for higher flow rates,the pump with check valve is desirable.However,adding check valves implies more complex structure and higher probability of valve blocking,etc.In order to solve the problem,effective driving and transport mechanics with compact construction and reliable service are being sought.In this paper,using the second-order longitudinal vibration mode of a bar-shaped piezoelectric vibrator for driving fluid,a piezoelectric pump is successfully made.The proposed piezoelectric pump consists of coaxial cylindrical shells and a bar-shaped piezoelectric vibrator,which has a disk part and a cone part.The lead zirconium titanate ceramic rings fixed in the vibrator are polarized along the thickness direction.When the second-order longitudinal vibration of the vibrator along its axis is excited,the disk part of the vibrator changes periodically the volume of the chamber and the cone part acts as a pin valve,driving the fluid from the inlet port to the outlet port.Finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software ANSYS.Components of the piezoelectric pump were manufactured,assembled,and tested for flow rate and backpressure to validate the concepts of the proposed pump and confirm the simulation results of modal and harmonic analyses.The test results show that the performance of the proposed piezoelectric pump is about 910 mL/min in flow rate with a highest pressure level of 1.5 kPa under 400 V peak-to-peak voltage and 51.7 kHz operating frequency.It is confirmed that this bar-shaped piezoelectric transducer can be effectively applied in fluid transferring mechanism of pump through this research.
基金supported by National Natural Science Foundation of China(10574038)development project of high-tech industry of universities in Jiangsu(JHB05-08)Changzhou scientific and technological bureau(CE2005026).
文摘An orthogonal ultrasonic irradiation system consisting of HIFU with frequency at 1.05 MHz combined with ultrasound with frequency at 28 kHz was applied in this paper.Effect of cavitation was detected by pH-value measurement and conductance measurement.The result shows that the effect of cavitation caused by ultrasound with frequency at 28 kHz is greatly enhanced by HIFU piezoelectricity transducer with frequency at 1.05 MHz.
基金supported by the National Natural Science Foundation of China(Nos.60302001,10872074 and 10932004)Major State Basic Research Development Program of China(973 Program)(No.2009CB724205)
文摘The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in the paper. Only a time-harmonic voltage is applied across two electrodes of the piezoelectric shell as the external loading. A theoretical solution was obtained using the classical shell theory. Based on the solution, basic vibration characteristics of resonant frequencies, mode shapes were calculated and examined.
基金supported in part by the National Natural Science Foundation of China(No.11672142)the Technology Innovation 2025 Program of the Municipality of Ningbo(No.2019B10122)。
文摘The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.
基金the National Natural Science Foundation of China(Grant 11521202).
文摘In recent years,shear horizontal(SH)waves are being paid more and more attention to in structural health monitoring as it has only one displacement component.In this paper,a unidirectional SH wave transducer based on phase-controlled antiparallel thickness-shear(d15)piezoelectric strips(APS)is proposed.Here two pairs of identical APS were used each of which is a bidirectional SH wave transducer.By setting the interval between the two pairs of APS as 1/4 wavelength and the excitation delay between them as 1/4 period of the central operating frequency,unidirectional SH waves can be excited.Both finite element simulations and experiments were performed to validate the proposed design.Results show that SH0 waves were successfully excited only along one direction and those along the unwanted directions were suppressed very well.The proposed unidirectional SH wave transducer is very helpful to study the fundamentals and applications of SH waves.
文摘In this study the relation between the generated open circuit output voltages of the piezoelectric ceramics Cymbal transducers with applied impact mechanical energy is studied. The output voltages of piezoelectric ceramics Cymbal transducers are increased with the increasing of the applied mechanical energy. Under the same impact mechanical energy, the generated open circuit output voltages of the piezoelectric ceramics Cymbal transducer is much higher than that of uncapped piezoelectric ceramics disk alone. The generated open circuit output voltages of the piezoelectric ceramics Cymbal transducer depend on the geometry parameters and the metal thickness of end-cap. The generated open circuit voltage of piezoelectric ceramics Cymbal transducer with thick metal thickness is small than that with thin metal thickness.
文摘Abstract: A new type of piezoelectric transducer with compression/shear sense is developed and was successfully tested for measuring three dimension accelerations in shock and vibration experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975278 and 52277055)the Qing Lan Project,the Research Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)under Grant No.MCMS-I-0321G01+2 种基金the Biomedical Engineering Fusion Laboratory of the affiliated Jiangning Hospital of Nanjing Medical University(Grant No.JNYYZXKY202217)the Postgraduate Research&Practice Innovation Program of NUAA(Grant Nos.xcxjh20220114 and xcxjh20220111)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0353).
文摘Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces.
基金the National Natural Science Foundation of China(51275490)
文摘To improve the performance of ultrasonic transducer, the samples of PZT were improved by doping. The doped PZT was observed and analyzed from the following aspects: the crystal phase structures, the surface morphologies and the dielectric constant. According to the transducer parameter requirements for ultrasonic machining, there are also requirements for the parameters of piezoelectric ceramics. The high performance PZT was prepared by doping the elements of Ga, Ba, Nb, Sn, and Sr in PZT. The doped PZT is suitable for power ultrasonic machining at 20 kHz through analysis using X-ray diffraction(XPD), a scanning electron microscope(SEM) and LCR meter. Therefore, the excellent performance of transducer for power ultrasonic machining is guaranteed.
文摘PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.
基金This work was financially supported by the Ministry of Science and Technology of China through 973-project (No. 2002CB613301).
文摘PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.
文摘We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT thin film was changed from (001) to (110) as the deposition temperature increased. The surface roughness of PZT thin films decreased with the increase of deposition temperature. The maximum amplitude of the piezoelectric response of PZT thin films decreased till the deposition temperature increased to 350°C. This tendency seems to be due to the change of the preferred orientation form (001) to (110). At over 450°C, this maximum value decreased due to both the increase of the surface roughness and the degradation of the crystallinity.
基金Supported by the National Natural Science Foundation of China(51305183)the Qing Lan Project of Jiangsu Provincethe Doctoral Start-up Foundation of Jinling Institute of Technology(jit-b-201412)
文摘To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.
基金supported by the National Natural Science Foundation of China(Nos.60302001 and 10872074)Major State Basic Research Development Program of China(973 Program)(No.2009CB724205).
文摘Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.