The problem of guaranteed cost active fault-tolerant controller (AFTC) design for networked control systems (NCSs) with both packet dropout and transmission delay is studied in this paper. Considering the packet d...The problem of guaranteed cost active fault-tolerant controller (AFTC) design for networked control systems (NCSs) with both packet dropout and transmission delay is studied in this paper. Considering the packet dropout and transmission delay, a piecewise constant controller is adopted. With a guaranteed cost function, optimal controllers whose number is equal to the number of actuators are designed, and the design process is formulated as a convex optimal problem that can be solved by existing software. The control strategy is proposed as follows: when actuator failures appear, the fault detection and isolation unit sends out the information to the controller choosing strategy, and then the optimal stabilizing controller with the smallest guaranteed cost value is chosen. Two illustrative examples are given to demonstrate the effectiveness of the proposed approach. By comparing with the existing methods, it can be seen that our method has a better performance.展开更多
This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels b...This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels between the sensor and the controller, and between the controller and the actuator, networked control systems are modeled as the Markovian jump linear system with four operation modes. Based on this model, the necessary and sufficient conditions for the mean square stability of the deterministic networked control systems and uncertain networked control systems are given by using the theory of the Markovian jump linear system, and corresponding controller design procedures are proposed via the cone complementarity linearization method. Finally, the numerical example and simulations are given to illustrate the effectiveness of the proposed results.展开更多
A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modele...A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.展开更多
In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system ...In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.展开更多
The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh...The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
This paper investigates the observer-based H-infinity control problem for networked control systems (NCSs) with random packet dropouts. A general packet dropout model with multiple independent stochastic variables i...This paper investigates the observer-based H-infinity control problem for networked control systems (NCSs) with random packet dropouts. A general packet dropout model with multiple independent stochastic variables in the multiple channels case is adopted to describe the data missing in the limited communication channels. With the consideration of the sensor-to-controller and controller-to-actuator packet dropouts at the same time, a new method is pro- posed based on a separation lemma to design an observer-based H-infinity controller, which exponentially stabilizes the closed-loop system in the sense of mean square and also achieves a prescribed H-infinity disturbance attenuation level. A numerical example is given to illustrate the effectiveness of the proposed control method.展开更多
Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,th...Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.展开更多
In this paper, the stabilization problem for a class of networked control systems (NCSs) with data packet dropouts and transmission time delays is considered, where the delays are time-varying and uncertain, the dat...In this paper, the stabilization problem for a class of networked control systems (NCSs) with data packet dropouts and transmission time delays is considered, where the delays are time-varying and uncertain, the data packet dropout is modeled as a two-state Markov chain. To compensate the lost packet, a data packet dropout compensator is established. Thus a more realistic model for such NCSs is presented. Sufficient conditions for the stabilization of the new resulting system are derived in the form of linear matrix inequalities (LMIs). Numerical example illustrates the solvability and effectiveness of the results.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
为实现网络控制系统(Networked Control Systems,NCS)中重放攻击的检测,在现有研究利用物理水印检测重放攻击的启发下,设计了利用主动丢包对重放攻击进行实时检测的方法 .首先,在理论层面上,利用系统输出的残差构建检测函数,并通过受攻...为实现网络控制系统(Networked Control Systems,NCS)中重放攻击的检测,在现有研究利用物理水印检测重放攻击的启发下,设计了利用主动丢包对重放攻击进行实时检测的方法 .首先,在理论层面上,利用系统输出的残差构建检测函数,并通过受攻击前后检测函数的变化,证明该检测方法的有效性.然后,以一辆四轮汽车为被控对象,比较车辆受攻击前后速度与检测函数的变化.最后,综合考虑车辆对重放攻击的检测结果与速度跟踪结果,确定车辆的最优主动丢包率的范围区间.结果表明:加入主动丢包前,车辆受到重放攻击时,速度会发生剧烈变化而检测函数几乎没有变化;加入主动丢包后,车辆受到重放攻击时,速度剧烈变化的同时检测函数也产生了剧烈的变化;主动丢包率为12%~16%时,系统既能够准确地检测出重放攻击,又能够保证车辆平稳行驶,为后续的重放攻击检测研究提供了参考.展开更多
基金supported by National Outstanding Youth Foundation (No. 60525303)National Natural Science Foundation of China(No. 60704009)+1 种基金Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)the Doctor Fund of YanShan University (No. B203)
文摘The problem of guaranteed cost active fault-tolerant controller (AFTC) design for networked control systems (NCSs) with both packet dropout and transmission delay is studied in this paper. Considering the packet dropout and transmission delay, a piecewise constant controller is adopted. With a guaranteed cost function, optimal controllers whose number is equal to the number of actuators are designed, and the design process is formulated as a convex optimal problem that can be solved by existing software. The control strategy is proposed as follows: when actuator failures appear, the fault detection and isolation unit sends out the information to the controller choosing strategy, and then the optimal stabilizing controller with the smallest guaranteed cost value is chosen. Two illustrative examples are given to demonstrate the effectiveness of the proposed approach. By comparing with the existing methods, it can be seen that our method has a better performance.
基金supported by the National Natural Science Foundation of China (60574082,60804027)
文摘This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels between the sensor and the controller, and between the controller and the actuator, networked control systems are modeled as the Markovian jump linear system with four operation modes. Based on this model, the necessary and sufficient conditions for the mean square stability of the deterministic networked control systems and uncertain networked control systems are given by using the theory of the Markovian jump linear system, and corresponding controller design procedures are proposed via the cone complementarity linearization method. Finally, the numerical example and simulations are given to illustrate the effectiveness of the proposed results.
文摘A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z42g), National Natural Science Foundation of China (60574085, 60736026, 60721003), and German Research Foundation (DI 773/10)
基金supported by National Natural Science Foundation of China (No. 60874052)
文摘In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.
基金supported by Chongqing Big Data Engineering Laboratory for Children,Chongqing Electronics Engineering Technology Research Center for Interactive Learning,Project of Science and Technology Research Program of Chongqing Education Commission of China. (No.KJZD-K201801601).
文摘The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.
基金supported by the Defence Science Organisation-National Laboratories (DSO-NL),Singapore (No.DSOCL06184)
文摘This paper investigates the observer-based H-infinity control problem for networked control systems (NCSs) with random packet dropouts. A general packet dropout model with multiple independent stochastic variables in the multiple channels case is adopted to describe the data missing in the limited communication channels. With the consideration of the sensor-to-controller and controller-to-actuator packet dropouts at the same time, a new method is pro- posed based on a separation lemma to design an observer-based H-infinity controller, which exponentially stabilizes the closed-loop system in the sense of mean square and also achieves a prescribed H-infinity disturbance attenuation level. A numerical example is given to illustrate the effectiveness of the proposed control method.
基金supported by the Natural Science Foundation of Jiangsu Province (BK2006202)
文摘Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.
基金The work was supported in part by the National Natural Science Foundation of China (No. 60174010, 60404022)the Key Scientific ResearchProject of the Education Ministry (No. 204014)
文摘In this paper, the stabilization problem for a class of networked control systems (NCSs) with data packet dropouts and transmission time delays is considered, where the delays are time-varying and uncertain, the data packet dropout is modeled as a two-state Markov chain. To compensate the lost packet, a data packet dropout compensator is established. Thus a more realistic model for such NCSs is presented. Sufficient conditions for the stabilization of the new resulting system are derived in the form of linear matrix inequalities (LMIs). Numerical example illustrates the solvability and effectiveness of the results.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
文摘为实现网络控制系统(Networked Control Systems,NCS)中重放攻击的检测,在现有研究利用物理水印检测重放攻击的启发下,设计了利用主动丢包对重放攻击进行实时检测的方法 .首先,在理论层面上,利用系统输出的残差构建检测函数,并通过受攻击前后检测函数的变化,证明该检测方法的有效性.然后,以一辆四轮汽车为被控对象,比较车辆受攻击前后速度与检测函数的变化.最后,综合考虑车辆对重放攻击的检测结果与速度跟踪结果,确定车辆的最优主动丢包率的范围区间.结果表明:加入主动丢包前,车辆受到重放攻击时,速度会发生剧烈变化而检测函数几乎没有变化;加入主动丢包后,车辆受到重放攻击时,速度剧烈变化的同时检测函数也产生了剧烈的变化;主动丢包率为12%~16%时,系统既能够准确地检测出重放攻击,又能够保证车辆平稳行驶,为后续的重放攻击检测研究提供了参考.