Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In ...Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.展开更多
Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Ser...Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Services(Diff Serv) architecture for IP network which is based on classifying packets in to different service classes and scheduling them. Scheduling schemes of today's wireless broadband networks work on service differentiation. In this paper, we present a novel packet queue scheduling algorithm called dynamically weighted low complexity fair queuing(DWLC-FQ) which is an improvement over weighted fair queuing(WFQ) and worstcase fair weighted fair queuing+(WF2Q+). The proposed algorithm incorporates dynamic weight adjustment mechanism to cope with dynamics of data traffic such as burst and overload. It also reduces complexity associated with virtual time update and hence makes it suitable for high speed networks. Simulation results of proposed packet scheduling scheme demonstrate improvement in delay and drop rate performance for constant bit rate and video applications with very little or negligible impact on fairness.展开更多
Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome ...Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.展开更多
Most of current wireless packet scheduling algorithms aim at resource allocation as fairly as possible or maximizing throughput. This paper proposed a new packet scheduling algorithm that aims at satisfying delay requ...Most of current wireless packet scheduling algorithms aim at resource allocation as fairly as possible or maximizing throughput. This paper proposed a new packet scheduling algorithm that aims at satisfying delay requirement and is the improvement of earliest due first (EDF) algorithm in wired networks. The main idea is to classify the packets based on their delay bound, scheduling the most "urgent" class of user and the users that have the best channel condition with higher priority. This algorithm can easily integrate with common buffer management algorithms, when buffer management algorithm cannot accept new arrival packets, try to modify scheduling policy. Packet scheduling algorithms in multiple bottleneck wireless networks were also discussed. A new variable multi-hop factor was defined to estimate the congestion situation (including channel condition) of future hops. Multi-hop factor can be integrated into packet scheduling algorithms as assistant and supplement to improve its performance in multi-bottleneck wireless networks.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
In recent years,live streaming has become a popular application,which uses TCP as its primary transport protocol.Quick UDP Internet Connections(QUIC)protocol opens up new opportunities for live streaming.However,how t...In recent years,live streaming has become a popular application,which uses TCP as its primary transport protocol.Quick UDP Internet Connections(QUIC)protocol opens up new opportunities for live streaming.However,how to leverage QUIC to transmit live videos has not been studied yet.This paper first investigates the achievable quality of experience(QoE)of streaming live videos over TCP,QUIC,and their multipath extensions Multipath TCP(MPTCP)and Multipath QUIC(MPQUIC).We observe that MPQUIC achieves the best performance with bandwidth aggregation and transmission reliability.However,network fluctuations may cause heterogeneous paths,high path loss,and band-width degradation,resulting in significant QoE deterioration.Motivated by the above observations,we investigate the multipath packet scheduling problem in live streaming and design 4D-MAP,a multipath adaptive packet scheduling scheme over QUIC.Specifically,a linear upper confidence bound(LinUCB)-based online learning algorithm,along with four novel scheduling mechanisms,i.e.,Dispatch,Duplicate,Discard,and Decompensate,is proposed to conquer the above problems.4D-MAP has been evaluated in both controlled emulation and real-world networks to make comparison with the state-of-the-art multipath transmission schemes.Experimental results reveal that 4D-MAP outperforms others in terms of improving the QoE of live streaming.展开更多
Modified largest weighted delay first (M-LWDF) is a typical packet scheduling algorithm for supporting hybrid real-time services over wireless networks. However, so far, there is little literature available regardin...Modified largest weighted delay first (M-LWDF) is a typical packet scheduling algorithm for supporting hybrid real-time services over wireless networks. However, so far, there is little literature available regarding the theoretic analysis of M-LWDF fairness. This paper gives a theoretic analysis of M-LWDF fairness, which shows that M-LWDF fairness is related to channel condition, packet's arrival process and the ratio of quality of service (QoS) requirements of different service queues. Given service QoS requirements and other parameters related to channel model and packet's arrival process, the fairness is merely related to the ratio of the number of users in the service queues. Based on the analysis, an enhanced M-LWDF algorithm (EM-LWDF) is proposed and demonstrated in this paper. EM-LWDF is strictly designed in light of the fairness criteria of QoS requirements, so its fairness is almost not related to the ratio of the number of users in the service queues, and the theoretical value of fairness index is equal to 1. Simulation results validate the theoretic analysis and show the effectiveness of EM-LWDF in improving fairness.展开更多
This paper proposes a channel and queue aware fair (CQAF) packet scheduling scheme for the downlink packet transmission in multiuser orthogonal frequency division multiplexing (OFDM) systems. By making use of the ...This paper proposes a channel and queue aware fair (CQAF) packet scheduling scheme for the downlink packet transmission in multiuser orthogonal frequency division multiplexing (OFDM) systems. By making use of the information on the channel conditions and the queue lengths, the proposed CQAF packet scheduling scheme efficiently allocates the subcarriers, transmission power and modulation level to users under the constraints of total transmission power, the number of subcarriers, bit-error-rate (BER) requirement and generalized processor sharing (GPS)-based fairness requirement. The numerical results show that the proposed CQAF packet scheduling scheme can reduce the transmission delay and queue length significantly while maximizing system throughput and maintaining fairness among users.展开更多
To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedi...To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-gnaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.展开更多
The unique characteristics of opportunistic networks (ONs), such as intermittent connectivity and limited network resources, makes it difficult to support quality of service (QoS) provisioning, particularly to gua...The unique characteristics of opportunistic networks (ONs), such as intermittent connectivity and limited network resources, makes it difficult to support quality of service (QoS) provisioning, particularly to guarantee delivery ratio and delivery delay. In this paper, we propose a QoS-oriented packet scheduling scheme (QPSS) to make decisions for bundle transmissions to satisfy the needs for the delivery ratio and delivery delay constraints of bundles. Different from prior works, a novel bundle classification method based on the reliability and latency requirements is utilized to decide the traffic class of bundles. A scheduling algorithm of traffic class and bundle redundancy is used to maintain a forwarding and dropping priority queue and allocate network resources in QPSS. Simulation results indicate that our scheme not only achieves a higher overall delivery ratio but also obtains an approximate 14% increase in terms of the amount of eligible bundles.展开更多
In this paper,a utility-based feedback delay-aware and buffer status-aware( FABA) scheduling scheme is proposed for downlink multiuser multiple-input multiple-output orthogonal frequency-division multiple-access( MIMO...In this paper,a utility-based feedback delay-aware and buffer status-aware( FABA) scheduling scheme is proposed for downlink multiuser multiple-input multiple-output orthogonal frequency-division multiple-access( MIMO-OFDMA) systems. The FABA scheme allocates subcarriers to multiusers with an objective of not only maximizing the total system capacity but reducing the system packet loss rate as well. We design a utility function which consists of a feedback estimate module,a proportional fairness module and a buffer monitoring module. The feedback estimate module is used to improve the system throughput by utilizing the Automatic Repeat-reQuest( ARQ) feedback information to combat the fast time-varying fading condition. The proportional fairness module can guarantee the scheduling fairness among users,and the buffer monitoring module can utilize the transmitting buffer status information to avoid high packet loss rate of the system caused by the system congestion. The FABA scheme then formulates the scheduling problem into a problem of overall system utility maximization. We solve the problem by using a heuristic algorithm with low computational complexity. The simulation results show that the proposed FABA scheme outperforms the existing algorithms in terms of the system throughput and the packet loss rate and can also guarantee the fairness demand among users.展开更多
This article briefly presented the design and software architecture of an IP/ATM multiple sub network router. It established the queue model of IP process module and proposed a traffic based scheduling mechanism (AICS...This article briefly presented the design and software architecture of an IP/ATM multiple sub network router. It established the queue model of IP process module and proposed a traffic based scheduling mechanism (AICS: Adaptive Incomplete Cyclic Service). It also provided a simulation study on the system throughput and packet delay jitter performance for both AICS mechanism and IICS mechanism proposed in the prior work. The simulation results show that, comparing with IICS, AICS can provide much better packet delay jitter performance when high speed sub networks exist bursty traffic and give better fairness.展开更多
In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput wi...In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
Fairness, latency and computational complexity are three important factors in evaluating the performance of a scheduling algorithm. Fairness must be satisfied so that service can be distributed according to the reserv...Fairness, latency and computational complexity are three important factors in evaluating the performance of a scheduling algorithm. Fairness must be satisfied so that service can be distributed according to the reserved rate. Only when latency is irrelevant to the number of connections, is it possible to minimize the end-to-end delay through controlling the reserved rate. Among existing scheduling algorithms, Round Robin is the least complex. However, conventional Round Robin is unable to ensure fairness, and the improved round robin algorithms like Deficit Round Robin, Weighted Round Robin and Virtual Round Robin are unable to ensure that their latencies are irrelevant to the number of connections although they gua- rantee fairness. Potential Round Robin developed for analysis of fairness and latency reduction is thus proposed. It is based on the introduction of a new concept, Round Potential Function. The function splits service time into a number of service round periods to guarantee fairness regardless of the serving process used in the period. In the analysis of latency, service round periods are re-split into multiple scanning cycles for further service distribution with approximate sorting between scanning cycles. As a result, latency is no longer relevant to the number of connections while the low complexity of round robin is kept.展开更多
Wireless Multimedia Sensor Networks (WMSNs), is a network of sensors, which are limited in terms of memory, computing, bandwidth, and battery lifetime. Multimedia transmission over WSN requires certain QoS guarantees ...Wireless Multimedia Sensor Networks (WMSNs), is a network of sensors, which are limited in terms of memory, computing, bandwidth, and battery lifetime. Multimedia transmission over WSN requires certain QoS guarantees such as huge amount of bandwidth, strict delay and lower loss ratio that makes transmitting multimedia is a complicated task. However, adopting cross-layer approach in WMSNs improves quality of service of WSN under different environmental conditions. In this work, an energy efficient and QoS aware framework for transmitting multimedia content over WSN (EQWSN) is presented, where packet, queue and path scheduling were introduced. It adapts the application layer parameter of video encoder to current wireless channel state, and drops less important packets in case of network congestion according to packet type. Finally, the path scheduling differentiates packets types/priority and route them through different paths with different QoS considering network lifetime. Simulation results show that the new scheme EQWSN transmits video quality with QoS guarantees in addition to prolonging network lifetime.展开更多
In this paper, we study resource management models and algorithms that satisfy multiple performance objects simultaneously. We realize the proportional fairness principle based QoS model, which defines both delay and ...In this paper, we study resource management models and algorithms that satisfy multiple performance objects simultaneously. We realize the proportional fairness principle based QoS model, which defines both delay and loss rate requirements of a class, to include fairness, which is important for the integration of multiple service classes. The resulting Proportional Fairness Scheduling model formalizes the goals of the network performance, user’s QoS requirement and system fairness and exposes the fundamental tradeoffs between these goals. In particular, it is difficult to simultaneously provide these objects. We propose a novel scheduling algorithm called Proportional Fairness Scheduling (PFS) that approximates the model closely and efficiently. We have implemented the PFS scheduling in Linux. By performing simulation and measurement experiments, we evaluate the delay and loss rate proportional fairness of PFS, and determine the computation overhead.展开更多
文摘Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.
文摘Services provided by internet need guaranteed network performance. Efficient packet queuing and scheduling schemes play key role in achieving this. Internet engineering task force(IETF) has proposed Differentiated Services(Diff Serv) architecture for IP network which is based on classifying packets in to different service classes and scheduling them. Scheduling schemes of today's wireless broadband networks work on service differentiation. In this paper, we present a novel packet queue scheduling algorithm called dynamically weighted low complexity fair queuing(DWLC-FQ) which is an improvement over weighted fair queuing(WFQ) and worstcase fair weighted fair queuing+(WF2Q+). The proposed algorithm incorporates dynamic weight adjustment mechanism to cope with dynamics of data traffic such as burst and overload. It also reduces complexity associated with virtual time update and hence makes it suitable for high speed networks. Simulation results of proposed packet scheduling scheme demonstrate improvement in delay and drop rate performance for constant bit rate and video applications with very little or negligible impact on fairness.
基金supported by the National Natural Science Foundation of China under Grants 62272256,61832012,and 61771289Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research under Grant ZR2022ZD03+1 种基金the Pilot Project for Integrated Innovation of Science,Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)under Grant 2022XD001Shandong Province Fundamental Research under Grant ZR201906140028。
文摘Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.
文摘Most of current wireless packet scheduling algorithms aim at resource allocation as fairly as possible or maximizing throughput. This paper proposed a new packet scheduling algorithm that aims at satisfying delay requirement and is the improvement of earliest due first (EDF) algorithm in wired networks. The main idea is to classify the packets based on their delay bound, scheduling the most "urgent" class of user and the users that have the best channel condition with higher priority. This algorithm can easily integrate with common buffer management algorithms, when buffer management algorithm cannot accept new arrival packets, try to modify scheduling policy. Packet scheduling algorithms in multiple bottleneck wireless networks were also discussed. A new variable multi-hop factor was defined to estimate the congestion situation (including channel condition) of future hops. Multi-hop factor can be integrated into packet scheduling algorithms as assistant and supplement to improve its performance in multi-bottleneck wireless networks.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
基金This work was supported by the National Natural Science Foundation of China under Grant No.62102430the Hunan Young Talents under Grant No.2020RC3027+2 种基金the Natural Science Foundation of Hunan Province of China under Grant No.2021JJ40688the Training Program for Excellent Young Innovators of Changsha under Grant No.kq2206001the Science Research Plan Program by National University of Defense Technology under Grant No.ZK22-50。
文摘In recent years,live streaming has become a popular application,which uses TCP as its primary transport protocol.Quick UDP Internet Connections(QUIC)protocol opens up new opportunities for live streaming.However,how to leverage QUIC to transmit live videos has not been studied yet.This paper first investigates the achievable quality of experience(QoE)of streaming live videos over TCP,QUIC,and their multipath extensions Multipath TCP(MPTCP)and Multipath QUIC(MPQUIC).We observe that MPQUIC achieves the best performance with bandwidth aggregation and transmission reliability.However,network fluctuations may cause heterogeneous paths,high path loss,and band-width degradation,resulting in significant QoE deterioration.Motivated by the above observations,we investigate the multipath packet scheduling problem in live streaming and design 4D-MAP,a multipath adaptive packet scheduling scheme over QUIC.Specifically,a linear upper confidence bound(LinUCB)-based online learning algorithm,along with four novel scheduling mechanisms,i.e.,Dispatch,Duplicate,Discard,and Decompensate,is proposed to conquer the above problems.4D-MAP has been evaluated in both controlled emulation and real-world networks to make comparison with the state-of-the-art multipath transmission schemes.Experimental results reveal that 4D-MAP outperforms others in terms of improving the QoE of live streaming.
基金supported by the National Natural Science Foundation of China (60972068)the Basic Application Research Program of Chongqing Education Committee of China (KJ090502,KJ100517)+1 种基金the Graduate Innovation Program of Chongqing University of China (200904B1A0010306)the Youth Program Foundation of Chongqing University of Posts and Telecommunications of China (A2008-28)
文摘Modified largest weighted delay first (M-LWDF) is a typical packet scheduling algorithm for supporting hybrid real-time services over wireless networks. However, so far, there is little literature available regarding the theoretic analysis of M-LWDF fairness. This paper gives a theoretic analysis of M-LWDF fairness, which shows that M-LWDF fairness is related to channel condition, packet's arrival process and the ratio of quality of service (QoS) requirements of different service queues. Given service QoS requirements and other parameters related to channel model and packet's arrival process, the fairness is merely related to the ratio of the number of users in the service queues. Based on the analysis, an enhanced M-LWDF algorithm (EM-LWDF) is proposed and demonstrated in this paper. EM-LWDF is strictly designed in light of the fairness criteria of QoS requirements, so its fairness is almost not related to the ratio of the number of users in the service queues, and the theoretical value of fairness index is equal to 1. Simulation results validate the theoretic analysis and show the effectiveness of EM-LWDF in improving fairness.
基金Supported by the National High-Tech Research & Development Program of China (Grant Nos. 2007AA01Z207, 2007AA01Z268)Program forNew Century Excellent Talents in University, Research Fund of National Mobile Communications Research Laboratory, Southeast University(Grant No. 2008A06)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory, Southeast Universitythe startup fund of Nanjing University of Aeronautics and Astronauticsthe Open Research Fund of State Key Laboratory of Advance Optical Cmmunication Systems and Networks (Grant No. 2008SH06)
文摘This paper proposes a channel and queue aware fair (CQAF) packet scheduling scheme for the downlink packet transmission in multiuser orthogonal frequency division multiplexing (OFDM) systems. By making use of the information on the channel conditions and the queue lengths, the proposed CQAF packet scheduling scheme efficiently allocates the subcarriers, transmission power and modulation level to users under the constraints of total transmission power, the number of subcarriers, bit-error-rate (BER) requirement and generalized processor sharing (GPS)-based fairness requirement. The numerical results show that the proposed CQAF packet scheduling scheme can reduce the transmission delay and queue length significantly while maximizing system throughput and maintaining fairness among users.
基金supported by the Joint European Project ICT-LEAP,the National Natural Science Foundation of China(60573141)the Hi-Tech Research and Development Program of China(2007AA701302)the‘Six Heights of Talent' Project of Jiangsu Province
文摘To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-gnaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.
基金supported by the NSFC-Guangdong Joint Found (U1501254)the Co-Construction Program with the Beijing Municipal Commission of Education and the Ministry of Science and Technology of China (2012BAH45B01)+1 种基金the Fundamental Research Funds for the Central Universities (BUPT2011RCZJ16,2014ZD03-03)the China Information Security Special Fund (NDRC)
文摘The unique characteristics of opportunistic networks (ONs), such as intermittent connectivity and limited network resources, makes it difficult to support quality of service (QoS) provisioning, particularly to guarantee delivery ratio and delivery delay. In this paper, we propose a QoS-oriented packet scheduling scheme (QPSS) to make decisions for bundle transmissions to satisfy the needs for the delivery ratio and delivery delay constraints of bundles. Different from prior works, a novel bundle classification method based on the reliability and latency requirements is utilized to decide the traffic class of bundles. A scheduling algorithm of traffic class and bundle redundancy is used to maintain a forwarding and dropping priority queue and allocate network resources in QPSS. Simulation results indicate that our scheme not only achieves a higher overall delivery ratio but also obtains an approximate 14% increase in terms of the amount of eligible bundles.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2012AA01A508)the National Natural Science Funds of China for Young Scholar(Grant No.61302080)the Central Universities Research and Innovation Program of China for Young Scholar(Grant No.2013RC0112)
文摘In this paper,a utility-based feedback delay-aware and buffer status-aware( FABA) scheduling scheme is proposed for downlink multiuser multiple-input multiple-output orthogonal frequency-division multiple-access( MIMO-OFDMA) systems. The FABA scheme allocates subcarriers to multiusers with an objective of not only maximizing the total system capacity but reducing the system packet loss rate as well. We design a utility function which consists of a feedback estimate module,a proportional fairness module and a buffer monitoring module. The feedback estimate module is used to improve the system throughput by utilizing the Automatic Repeat-reQuest( ARQ) feedback information to combat the fast time-varying fading condition. The proportional fairness module can guarantee the scheduling fairness among users,and the buffer monitoring module can utilize the transmitting buffer status information to avoid high packet loss rate of the system caused by the system congestion. The FABA scheme then formulates the scheduling problem into a problem of overall system utility maximization. We solve the problem by using a heuristic algorithm with low computational complexity. The simulation results show that the proposed FABA scheme outperforms the existing algorithms in terms of the system throughput and the packet loss rate and can also guarantee the fairness demand among users.
文摘This article briefly presented the design and software architecture of an IP/ATM multiple sub network router. It established the queue model of IP process module and proposed a traffic based scheduling mechanism (AICS: Adaptive Incomplete Cyclic Service). It also provided a simulation study on the system throughput and packet delay jitter performance for both AICS mechanism and IICS mechanism proposed in the prior work. The simulation results show that, comparing with IICS, AICS can provide much better packet delay jitter performance when high speed sub networks exist bursty traffic and give better fairness.
文摘In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金the National Defense Pre-Research Project (No.15.8.4), and the National '863' High-Tech Programme of China (No. 863-317-01-10-
文摘Fairness, latency and computational complexity are three important factors in evaluating the performance of a scheduling algorithm. Fairness must be satisfied so that service can be distributed according to the reserved rate. Only when latency is irrelevant to the number of connections, is it possible to minimize the end-to-end delay through controlling the reserved rate. Among existing scheduling algorithms, Round Robin is the least complex. However, conventional Round Robin is unable to ensure fairness, and the improved round robin algorithms like Deficit Round Robin, Weighted Round Robin and Virtual Round Robin are unable to ensure that their latencies are irrelevant to the number of connections although they gua- rantee fairness. Potential Round Robin developed for analysis of fairness and latency reduction is thus proposed. It is based on the introduction of a new concept, Round Potential Function. The function splits service time into a number of service round periods to guarantee fairness regardless of the serving process used in the period. In the analysis of latency, service round periods are re-split into multiple scanning cycles for further service distribution with approximate sorting between scanning cycles. As a result, latency is no longer relevant to the number of connections while the low complexity of round robin is kept.
文摘Wireless Multimedia Sensor Networks (WMSNs), is a network of sensors, which are limited in terms of memory, computing, bandwidth, and battery lifetime. Multimedia transmission over WSN requires certain QoS guarantees such as huge amount of bandwidth, strict delay and lower loss ratio that makes transmitting multimedia is a complicated task. However, adopting cross-layer approach in WMSNs improves quality of service of WSN under different environmental conditions. In this work, an energy efficient and QoS aware framework for transmitting multimedia content over WSN (EQWSN) is presented, where packet, queue and path scheduling were introduced. It adapts the application layer parameter of video encoder to current wireless channel state, and drops less important packets in case of network congestion according to packet type. Finally, the path scheduling differentiates packets types/priority and route them through different paths with different QoS considering network lifetime. Simulation results show that the new scheme EQWSN transmits video quality with QoS guarantees in addition to prolonging network lifetime.
基金supported by the National Natural Science Foundation of China(Grant Nos.90104002,69725003)
文摘In this paper, we study resource management models and algorithms that satisfy multiple performance objects simultaneously. We realize the proportional fairness principle based QoS model, which defines both delay and loss rate requirements of a class, to include fairness, which is important for the integration of multiple service classes. The resulting Proportional Fairness Scheduling model formalizes the goals of the network performance, user’s QoS requirement and system fairness and exposes the fundamental tradeoffs between these goals. In particular, it is difficult to simultaneously provide these objects. We propose a novel scheduling algorithm called Proportional Fairness Scheduling (PFS) that approximates the model closely and efficiently. We have implemented the PFS scheduling in Linux. By performing simulation and measurement experiments, we evaluate the delay and loss rate proportional fairness of PFS, and determine the computation overhead.