Particle elongation is an important factor affecting the packing properties of rod-like particles. However, rod-like particles can be easily bent into non-convex shapes, in which the effect of bending should also be o...Particle elongation is an important factor affecting the packing properties of rod-like particles. However, rod-like particles can be easily bent into non-convex shapes, in which the effect of bending should also be of concerned, To explore the shape effects of elongation and bending, together with the size and volume fraction effects on the disordered packing density of mixtures of non-convex particles, binary and polydisperse mixtures of curved spherocylinders are simulated employing sphere assembly models and the relaxation algorithm in the present work. For binary packings with the same volume, curves of the packing density versus volume fraction have good linearity, while densities are plotted as a series of equidistant curves under the condition of the same shape. The independence of size and shape effects on the packing density is verified for mixtures of curved spherocylinders. The explicit formula used to predict the density of binary mixtures, by superposing the two independent functions of the size and shape parameters, is extended to include a non-convex shape factor. A polydisperse packing with the shape factor following a uniform distribution under the condition of the same volume is equivalent to a binary mixture with certain components. The packing density is thus predicted as the mean of maximum and minimum densities employing a weighing method.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11272010, 11572004 and 11602088). Tile China Postdoctoral Science Foundation (Grant No. 2016M592484) is also acknowledged.
文摘Particle elongation is an important factor affecting the packing properties of rod-like particles. However, rod-like particles can be easily bent into non-convex shapes, in which the effect of bending should also be of concerned, To explore the shape effects of elongation and bending, together with the size and volume fraction effects on the disordered packing density of mixtures of non-convex particles, binary and polydisperse mixtures of curved spherocylinders are simulated employing sphere assembly models and the relaxation algorithm in the present work. For binary packings with the same volume, curves of the packing density versus volume fraction have good linearity, while densities are plotted as a series of equidistant curves under the condition of the same shape. The independence of size and shape effects on the packing density is verified for mixtures of curved spherocylinders. The explicit formula used to predict the density of binary mixtures, by superposing the two independent functions of the size and shape parameters, is extended to include a non-convex shape factor. A polydisperse packing with the shape factor following a uniform distribution under the condition of the same volume is equivalent to a binary mixture with certain components. The packing density is thus predicted as the mean of maximum and minimum densities employing a weighing method.