A simulation model developed by the authors (Huang et al., 1999) was validated against independent field measurements of methane emission from rice paddy soils in Texas of USA, Tuzu Of China and Vercelli of Italy.A si...A simulation model developed by the authors (Huang et al., 1999) was validated against independent field measurements of methane emission from rice paddy soils in Texas of USA, Tuzu Of China and Vercelli of Italy.A simplified version of the simulation model was further validated against methane emission measurements from various regions of the world, including italy, China, Indonesia, Philippines and the United States. Model validation suggested that the seasonal variation of methane emission was mainly regulated by rice growth and development and that methane emission could be predicted from rice net productivity, cultivar character, soil texture and temperature, and organic matter amendments. Model simulations in general agreed with the observations. The comparison between computed and measured methane emission resulted in correlation coefficients r2 values from 0.450 to 0.952, significant at 0.01-0.001 probability level.On the basis of available information on rice cultivated area, growth duration, grain yield, soil texture and temperature, methane emission from rice paddy soils of China's Mainland was estimated for 28 rice cultivated provinces/municipal cities by employing the validated model. The calculated daily methane emission rates, on a provincial scale, ranged from 0.12 to 0.71 g m-2 with an average of 0.26 g m-2. A total amount of 7.92 Tg CH4 per year, ranging from 5.89 to 11.17 Tg year-1, was estimated to be released from Chinese rice paddy soils. Of the total, 45% was emitted from the single-rice growing season, and 19% and 36% were from the early-rice and the late-rice growing seasons, respectively. Approximately 70% of the total was emitted in the region located at latitude between 25°and 32°N. The emissions from rice fields in Sichuan and Hunan provinces were calculated to be 2.34 Tg year-1, accounting for approximately 30% of the total.展开更多
Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(...Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(Hydragric Anthrosol and Haplic Acrisol),two biochar application rates(0.5 wt%and 1.5 wt%)and two rice varieties(common rice var.Xiushui134 and hybrid super rice var.Zhongkejiayou12-6)meanwhile.Seedling NUE of common rice Xiuhui134 was significantly increased(p<0.05)by 78.2%in Hydragric Anthrosol and by 91.4%in Haplic Acrisol following biochar addition with 1.5 wt%.However,biochar addition exerted no influence on seedling NUE of super rice Zhongkejiayou12-6 in both soils.Overall,0.09–0.10 units higher soil pH and 105–116%higher soil NH_(4)^(+)-N were observed in Xiushui134 growing two soils with 1.5 wt%biochar.In addition,improved root morphology(including longer root length,larger root surface area,bigger root volume,and more root tips)contributed to the higher seedling NUE of Xiushui134 in two soils.The soil pH and NH_(4)^(+)-N content,also the root morphology were influenced by biochar,which though could not thoroughly explained the NUE of Zhongkejiayou12-6.In conclusion,biochar application to paddy soil changed soil pH and NH_(4)^(+)-N content,root growth,and the consequent seedling NUE of rice,which effects are relative with rice cultivar,biochar addition rate,and soil type.展开更多
With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factor...With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factors, was developed to predict methane emission from rice paddy soils. In the present model, the amount of methane transported from the soil to the atmosphere was determined by the rates of CH4 production and an emitted fraction. The rates of CH4 production in irrigated rice soils were computed from the availability of methanogenic substrates that are primarily derived from rice plaaes and added organic matter and the influence of soil texture, soil redox potential and temperature. The fraction of methane emitted was assumed to be modulated by the rice plants and declines with rice growth and development. TO make it applicable to a wider area with limited data sets, a simplified version of the model was also derived to predict methane emission in a more practical manner.展开更多
[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With c...[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.展开更多
This paper reports the influences of the herbicide butachlor( n butoxymethl chloro 2', 6' diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehyd...This paper reports the influences of the herbicide butachlor( n butoxymethl chloro 2', 6' diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 μg/g dried soil, 11.0 μg/g dried soil and 22.0 μg/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 μg/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.展开更多
文摘A simulation model developed by the authors (Huang et al., 1999) was validated against independent field measurements of methane emission from rice paddy soils in Texas of USA, Tuzu Of China and Vercelli of Italy.A simplified version of the simulation model was further validated against methane emission measurements from various regions of the world, including italy, China, Indonesia, Philippines and the United States. Model validation suggested that the seasonal variation of methane emission was mainly regulated by rice growth and development and that methane emission could be predicted from rice net productivity, cultivar character, soil texture and temperature, and organic matter amendments. Model simulations in general agreed with the observations. The comparison between computed and measured methane emission resulted in correlation coefficients r2 values from 0.450 to 0.952, significant at 0.01-0.001 probability level.On the basis of available information on rice cultivated area, growth duration, grain yield, soil texture and temperature, methane emission from rice paddy soils of China's Mainland was estimated for 28 rice cultivated provinces/municipal cities by employing the validated model. The calculated daily methane emission rates, on a provincial scale, ranged from 0.12 to 0.71 g m-2 with an average of 0.26 g m-2. A total amount of 7.92 Tg CH4 per year, ranging from 5.89 to 11.17 Tg year-1, was estimated to be released from Chinese rice paddy soils. Of the total, 45% was emitted from the single-rice growing season, and 19% and 36% were from the early-rice and the late-rice growing seasons, respectively. Approximately 70% of the total was emitted in the region located at latitude between 25°and 32°N. The emissions from rice fields in Sichuan and Hunan provinces were calculated to be 2.34 Tg year-1, accounting for approximately 30% of the total.
基金This research is funded by the National Natural Science Foundation of China(31972518)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(Hydragric Anthrosol and Haplic Acrisol),two biochar application rates(0.5 wt%and 1.5 wt%)and two rice varieties(common rice var.Xiushui134 and hybrid super rice var.Zhongkejiayou12-6)meanwhile.Seedling NUE of common rice Xiuhui134 was significantly increased(p<0.05)by 78.2%in Hydragric Anthrosol and by 91.4%in Haplic Acrisol following biochar addition with 1.5 wt%.However,biochar addition exerted no influence on seedling NUE of super rice Zhongkejiayou12-6 in both soils.Overall,0.09–0.10 units higher soil pH and 105–116%higher soil NH_(4)^(+)-N were observed in Xiushui134 growing two soils with 1.5 wt%biochar.In addition,improved root morphology(including longer root length,larger root surface area,bigger root volume,and more root tips)contributed to the higher seedling NUE of Xiushui134 in two soils.The soil pH and NH_(4)^(+)-N content,also the root morphology were influenced by biochar,which though could not thoroughly explained the NUE of Zhongkejiayou12-6.In conclusion,biochar application to paddy soil changed soil pH and NH_(4)^(+)-N content,root growth,and the consequent seedling NUE of rice,which effects are relative with rice cultivar,biochar addition rate,and soil type.
文摘With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factors, was developed to predict methane emission from rice paddy soils. In the present model, the amount of methane transported from the soil to the atmosphere was determined by the rates of CH4 production and an emitted fraction. The rates of CH4 production in irrigated rice soils were computed from the availability of methanogenic substrates that are primarily derived from rice plaaes and added organic matter and the influence of soil texture, soil redox potential and temperature. The fraction of methane emitted was assumed to be modulated by the rice plants and declines with rice growth and development. TO make it applicable to a wider area with limited data sets, a simplified version of the model was also derived to predict methane emission in a more practical manner.
文摘[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.
文摘This paper reports the influences of the herbicide butachlor( n butoxymethl chloro 2', 6' diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 μg/g dried soil, 11.0 μg/g dried soil and 22.0 μg/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 μg/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.