In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the...In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.展开更多
The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of ...The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of a real normed linear space.The first aspect of stability deals with the topological set convergence of families of solution sets of perturbed problems in the image space and Painlevé–Kuratowski set convergence of solution sets of the perturbed problems in the given space.The convergence in the given space is also established in terms of solution sets of scalarized perturbed problems.The second aspect of stability deals with semicontinuity of the solution set maps of parametric perturbed problems in both the spaces.展开更多
基金Supported by the National Natural Science Foundation of China(No.11301571.11271389.11271391)the Natural Science Foundation Project of ChongQing(No.CSTC,2012jjA00016.2011BA0030)the Education Committee Research Foundation of ChongQing(KJ130428)
文摘In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.
基金supported by MATRICS scheme of Department of Science and Technology,India(No.MTR/2017/00016).
文摘The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of a real normed linear space.The first aspect of stability deals with the topological set convergence of families of solution sets of perturbed problems in the image space and Painlevé–Kuratowski set convergence of solution sets of the perturbed problems in the given space.The convergence in the given space is also established in terms of solution sets of scalarized perturbed problems.The second aspect of stability deals with semicontinuity of the solution set maps of parametric perturbed problems in both the spaces.