The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality ...The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ^(13)C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.展开更多
Source rocks are the material basis of oil and gas generation and determine the potential resources of exploration blocks and have important research value. This paper studies the lithology, thickness, and geochemistr...Source rocks are the material basis of oil and gas generation and determine the potential resources of exploration blocks and have important research value. This paper studies the lithology, thickness, and geochemistry of Mesozoic source rocks in the southeastern East China Sea continental shelf. The results show that the Mesozoic source rocks are mainly dark mudstone and coal-bearing strata. The total thickness of Lower–Middle Jurassic source rocks ranges from 100 m to 700 m, and that of Lower Cretaceous source rocks ranges from 50 m to 350 m. The overall thickness of Mesozoic source rocks is distributed in the NE direction and their thickness center is located in the Jilong Depression. The Lower–Middle Jurassic source rocks are mainly developed shallow marine dark mudstone and transitional coal measure strata. Those of the Lower Cretaceous are mainly mudstone of a fan delta front. Lower –Middle Jurassic and Lower Cretaceous hydrocarbon source rocks are dominated by type III kerogen, with Lower –Middle Jurassic hydrocarbon source rocks having high organic matter abundance and being medium –good hydrocarbon source rocks, while Lower Cretaceous hydrocarbon source rocks have relatively poor quality. From northwest to southeast, the vitrinite reflectance Ro of Mesozoic source rocks increases gradually. Source rocks in the study area are divided into three types. The first hydrocarbon-generating area is mainly located in the southeastern region of the study area, and the Jilong Depression is the hydrocarbongenerating center. The results of this study can provide a basis for exploration of Mesozoic oil and gas resources in the southeastern East China Sea continental shelf.展开更多
This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocar...This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.展开更多
This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulte...This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulted depression in the Songliao Basin. The results show that some of the volcanic rocks were formed during subaquatic eruptions. These subaqueous volcanic rocks are further characterized by the interbedded black mudstone and tuffite, the presence of double-layer perlite enclosing aphyric or sparsely phyric rhyolite, the presence of a bentonite layer, and the coefficient of oxidation (Fe203/FeO). The types of rocks are volcanic breccia, lava breccias, perlite, rhyolite, tuff and sedimentary tuff. The subaquatic eruptions are distributed mainly in Wangjiatun, Shengping, Xuxi, Xuzhong, and Xudong. The XS-I area is the most typical. The organic abundance of over- burden mud rocks within the volcanic rocks of the Yingcheng Formation indicates that these rocks represent high-quality source rocks. The analysis also shows that continental subaquatic volcanic eruptions provide a rich supply of minerals and en- ergies for the lake basin and increase the organic matter content in the water. Moreover, the water differentiation provides a good reducing environment for the conservation of organic matter, and is beneficial for the formation of high-quality source rocks. Finally, we propose a hypothesis to describe the mode of subaquatic eruptions and the formation of high-quality source rocks.展开更多
基金supported by the National Natural Science Foundation of China(grants No.41430322 and 41472304)a project of the Key-Lab for Evolutionof Past Lift and Environment in Northeast Asia,Ministry of Education,China
文摘The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ^(13)C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.
基金financially supported by Geological Survey Program of China Geological Survey (DD20160137, DD20190205, DD20190208)the National Natural Science Foundation of China (41606079).
文摘Source rocks are the material basis of oil and gas generation and determine the potential resources of exploration blocks and have important research value. This paper studies the lithology, thickness, and geochemistry of Mesozoic source rocks in the southeastern East China Sea continental shelf. The results show that the Mesozoic source rocks are mainly dark mudstone and coal-bearing strata. The total thickness of Lower–Middle Jurassic source rocks ranges from 100 m to 700 m, and that of Lower Cretaceous source rocks ranges from 50 m to 350 m. The overall thickness of Mesozoic source rocks is distributed in the NE direction and their thickness center is located in the Jilong Depression. The Lower–Middle Jurassic source rocks are mainly developed shallow marine dark mudstone and transitional coal measure strata. Those of the Lower Cretaceous are mainly mudstone of a fan delta front. Lower –Middle Jurassic and Lower Cretaceous hydrocarbon source rocks are dominated by type III kerogen, with Lower –Middle Jurassic hydrocarbon source rocks having high organic matter abundance and being medium –good hydrocarbon source rocks, while Lower Cretaceous hydrocarbon source rocks have relatively poor quality. From northwest to southeast, the vitrinite reflectance Ro of Mesozoic source rocks increases gradually. Source rocks in the study area are divided into three types. The first hydrocarbon-generating area is mainly located in the southeastern region of the study area, and the Jilong Depression is the hydrocarbongenerating center. The results of this study can provide a basis for exploration of Mesozoic oil and gas resources in the southeastern East China Sea continental shelf.
基金Supported by National Major Research Program for Science and Technology of China(2017ZX05009-002)the National Natural Science Foundation of China(41772090)Postdoctoral Science Foundation of China(2020M680624)。
文摘This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.
基金supported by National Basic Research Program of China(Grant No.2009CB219306)Key-Lab for Evolution of Past Life and Environment in Northeast Asia of Ministry of Education,211 Project of Jilin University and Basic Scientific Research Business Funds Program of Ministry of Education in 2009(Innovative Team Development Plans of Jilin University)
文摘This paper reports the analysis on cores and rock slices, data on seismic and logging activities, characteristics of core samples, and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulted depression in the Songliao Basin. The results show that some of the volcanic rocks were formed during subaquatic eruptions. These subaqueous volcanic rocks are further characterized by the interbedded black mudstone and tuffite, the presence of double-layer perlite enclosing aphyric or sparsely phyric rhyolite, the presence of a bentonite layer, and the coefficient of oxidation (Fe203/FeO). The types of rocks are volcanic breccia, lava breccias, perlite, rhyolite, tuff and sedimentary tuff. The subaquatic eruptions are distributed mainly in Wangjiatun, Shengping, Xuxi, Xuzhong, and Xudong. The XS-I area is the most typical. The organic abundance of over- burden mud rocks within the volcanic rocks of the Yingcheng Formation indicates that these rocks represent high-quality source rocks. The analysis also shows that continental subaquatic volcanic eruptions provide a rich supply of minerals and en- ergies for the lake basin and increase the organic matter content in the water. Moreover, the water differentiation provides a good reducing environment for the conservation of organic matter, and is beneficial for the formation of high-quality source rocks. Finally, we propose a hypothesis to describe the mode of subaquatic eruptions and the formation of high-quality source rocks.