This paper introduces a notion of linear perturbed Palais-Smale condition for real-valued functions on Banach spaces. In terms of strongly exposed points, it presents a characterization which guarantees linear perturb...This paper introduces a notion of linear perturbed Palais-Smale condition for real-valued functions on Banach spaces. In terms of strongly exposed points, it presents a characterization which guarantees linear perturbed Palais-Smale condition holds for lower semicontinuous functions with bounded effective domains defined on a Banach space with the Radon-Nikody'm property; and gives an example showing that linear perturbed P-S condition is strictly weaker than the P-S condition.展开更多
The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretiz...The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretized perturbed NLS system is shown to possess an invadant set A on which the dynamics is topologically conjugate to a shift on four symbols.展开更多
The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretiz...The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretized perturbed NLS system is shown to possess an invariant set A on which the dynamics is topologically conjugate to a shift on four symbols.展开更多
文摘This paper introduces a notion of linear perturbed Palais-Smale condition for real-valued functions on Banach spaces. In terms of strongly exposed points, it presents a characterization which guarantees linear perturbed Palais-Smale condition holds for lower semicontinuous functions with bounded effective domains defined on a Banach space with the Radon-Nikody'm property; and gives an example showing that linear perturbed P-S condition is strictly weaker than the P-S condition.
文摘The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretized perturbed NLS system is shown to possess an invadant set A on which the dynamics is topologically conjugate to a shift on four symbols.
文摘The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger (NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretized perturbed NLS system is shown to possess an invariant set A on which the dynamics is topologically conjugate to a shift on four symbols.