Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut mic...Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has...BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has been re- ported to exert protective effects against I/R injury to vari- ous organs. The objective of this study is to investigate whether PNS preconditioning protects rat liver grafts from I/R injury via an antiapoptotic pathway. METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation ( OLT) and were divided into PNS preconditioning group (group P) and normal saline control group (group N) randomly according to whether PNS (50 mg/kg) was injected intra- venously 1 hour before liver grafts harvesting, and sham group (group S). The animals were separately killed 2, 6 and 24 hours after reperfusion. Plasma samples were collect- ed for test of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Liver tissues were collected to de- tect histological changes, apoptosis and the expression of TNF-α, Bcl-2 and Caspase-3 mRNA. RESULTS: The serum levels of ALT and AST and the apop- tosis index (AI) of liver tissue in group P were lower than in group N significantly 2, 6 and 24 hours after reperfusion. Compared with group N, the expression of TNF-a and Caspase-3 mRNA was reduced significantly in group P 2 and 6 hours after reperfusion and the expression of Bcl-2 mRNA was enhanced significantly in group P 6 and 24 hours after reperfusion. CONCLUSIONS: PNS preconditioning protects liver grafts from I/R injury effectively in rat OLT via an antiapoptotic pathway. The antiapoptotic mechanisms of PNS may in- clude inhibiting the expression of TNF-a and Caspase-3 and enhancing the expression of Bcl-2.展开更多
BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and ...BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were gavaged with 200 and 100 mg/kg PNS suspension, respectively. Huperzine A suspension (0.3 mg/kg) was used in the huperzine A group. Rats in the other 3 groups were gavaged with a corresponding volume of normal saline. In each group, administration was carried out once per day for 4 consecutive weeks. MAIN OUTCOME MEASURES: After administration, learning and memory abilities were measured by place navigation and spatial probe tests. Recording indices consisted of escape latency (time-to-platform), number of times to find the platform within 2 minutes, number of times the animal crosses the original platform location, and the percent of swimming time in each quadrant. RESULTS: Several rats died due to inflammatory reactions following brain lesion or intragastric administration; therefore, 61 rats were included in the final analysis. Results of spatial navigation test: Escape latency of rats in the model group was significantly prolonged, and number of times to find the platform within 2 minutes were significantly reduced compared with other groups (both P 〈 0.05). No significant differences in these two indices were measured among the administration groups (all P 〉 0.05). Results of spatial probe test: Times for crossing the original platform location and percent of time spent in the quadrant of original platform location were significantly less in the model group than in the other groups (P 〈 0.05). There were no significant differences in these two indices among the administration groups (P 〉 0.05). CONCLUSION: PNS can remarkably improve spatial learning and memory abilities of rats with AD. The therapeutic effect of PNS is not dose-dependent and is equivalent to the effect of huperzine A.展开更多
BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low...BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.展开更多
One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s ...One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s disease using beta-amyloid(25-35)in PC12 cells,and treated the cells with Yizhijiannao Granule and its four monomers,i.e.,icariin,catechin,Panax notoginseng saponins,and eleutheroside E.Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin,Panax notoginseng saponins,and icariin+Panax notoginseng saponins were protective against beta-amyloid(25-35)-induced injury in PC12 cells.Icariin in combination with Panax notoginseng saponins significantly inhibited early apoptosis of PC12 cells with beta-amyloid (25-35)-induced injury compared to icariin or Panax notoginseng saponins alone.The effects of icariin+Panax notoginseng saponins were similar to the effects of Yizhijiannao Granule.The findings indicate that two of the effective monomers of Yizhijiannao Granule,icariin and Panax notoginseng saponins,can synergistically inhibit early apoptosis of PC12 cells induced by beta-amyloid(25-35).展开更多
Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbit...Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbits were isolated and cultured by the density gradient centrifugation combined with adherent method.The cultured BMSCs were divided into three groups:normal control,H2O2 treatment(100μmol/L),and PNS pretreatment(0.1g/L).Intracellular reactive oxygen species(ROS)levels as the index of oxidative stress were measured by using 2’7’-dichlorodihydrofluorescein diacetate.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/PI.The protein expression of Bax in BMSCs was analyzed by Western blotting.Activity of caspase-3 enzyme was measured by spectrofluorometry.Results Pretreatment with PNS significantly decreased intracellular ROS level induced by H2O2(P<0.01).PNS markedly attenuated H2O2-induced apoptosis rate from 38.68% to 19.24%(P<0.01).PNS reversed H2O2-induced augmentation of Bax expression.Furthermore,PNS markedly reduced the altered in activity of caspase-3 enzyme induced by H2O2(P<0.01).Conclusion PNS has a protective effect on hydrogen peroxide-induced apoptosis in cultured rabbit BMSCs by scavenging ROS and decreasing Bax expression and caspase-3 activity.展开更多
Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and...Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function.展开更多
Objective: To investigate the effects of Panax notoginseng saponins (PNS) on hydrogen peroxide (H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells (BMSCs). Methods: The effects of different c...Objective: To investigate the effects of Panax notoginseng saponins (PNS) on hydrogen peroxide (H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells (BMSCs). Methods: The effects of different concentrations of PNS on proliferation and early osteoblast differentiation of BMSCs were determined by the MTT assay and an alkaline phosphatase (ALP) assay. An optimal effective concentration of PNS was determined and used in subsequent experiments. The cultured BMSCs were divided into three groups: untreated control, H2O2 treated, and PNS pretreatment of H2O2 treated. The oxidative stress level was assessed by superoxide dismutase (SOD) and malondialdehyde (MDA) assays. Flow cytometry was used to determine BMSC apoptosis by staining with annexinV-FITC/propidium iodide (PI). The activity of caspase-3 enzyme was measured by spectrofluorometry. Results: PNS (0.1g/L) significantly increased both BMSC proliferation rate and ALP activity, while it decreased the indicators of oxidative stress, caspase-3 activity, and the apoptosis rate of BMSCs induced by H2O2.. Conclusion: PNS, acting as a biological antioxidant, had a protective effect on H2O2-induced apoptosis in cultured rabbit BMSCs by decreasing oxidative stress and down-regulating caspase-3.展开更多
Background:Panax notoginseng saponins(PNS)is extracted from Sanqi(Panax notoginseng),which is a valuable herb and has been widely used in traditional Chinese medicine for the treatment of cerebrovascular diseases and ...Background:Panax notoginseng saponins(PNS)is extracted from Sanqi(Panax notoginseng),which is a valuable herb and has been widely used in traditional Chinese medicine for the treatment of cerebrovascular diseases and pain.PNS has been proved to promote blood circulation and angiogenesis by inhibiting platelet aggregation.In our previous study,PNS accompanied with geniposide can prevent Alzheimer’s disease(AD).However,the efficacy of PNS and its potential mechanism in AD remain unclear.Methods:Amyloid precursor protein/presenilin-1(APP/PS1)transgenic(Tg)mice were used as AD-like animal models.Wild-type mice and APP/PS1 transgenic were administrated with saline solution while mice in PNS treatment group were administrated with PNS at a dosage of 17 mg/kg/day for three months.Morris water maze(MWM)was applied to evaluate the spatial learning and memory and step-down test was used to evaluate the cognitive function.1%Thioflavin-S staining was used to calculate the average number amyloid plaques in cortex and hippocampus.CD31 staining was detected to observe the density of cerebrovascular in hippocampus areas and CD105 staining was further detected to evaluate angiogenesis.Laser Doppler PeriFlux 5000 was further measured the change of cerebrovascular blood flow.ChemDraw was used to draw the molecular structures of five main ingredients of PNS.AlzPlatform were used to estimate the potential targets of PNS.Results:By a bench of behavioral tests,PNS showed a better tendency in proving cognitive functions.In addition,the amyloid plaques in both cortex and hippocampus were significantly reduced after PNS intervention(P<0.05 and P<0.001 respectively).Furthermore,the density of cerebrovascular in the hippocampus areas was increased under PNS administration(P<0.001),which accompanied with angiogenesis in dentate gyrus areas and cerebrovascular blood flow promotion(P<0.05).By AlzPlatform docking serve,we screened five major ingredients of PNS-R1,Rd,Rb1,Re and Rg1.These screening data suggested that vascular related proteins could be the one of potential targets of PNS,such as platelet activating factor receptor and vasopressin V1a receptor.Conclusion:By modulating cerebrovascular function,PNS can reduce the deposition of amyloid plaques and exhibit the role of neuroprotection in a preventive strategy.展开更多
Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940...Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.展开更多
This paper reviews recent progress in the structural modification and activities on Panax notoginseng saponins(PNS).PNS can not only improve the function of cardio-cerebral system,central nervous system and immune sys...This paper reviews recent progress in the structural modification and activities on Panax notoginseng saponins(PNS).PNS can not only improve the function of cardio-cerebral system,central nervous system and immune system,but also reveal anticancer,anti-aging and anti-oxidation activities.In order to solve the problem of low bioavailability and poor absorbability of PNS in vivo,usually,the researchers modified the structure of PNS with three methods:glycoside cleavage(including acid hydrolysis,sulfation,etc.),biotransformation method(including enzyme hydrolysis,microbial transformation)and combinatorial chemical method.It was found that the structural modification sites of PNS were single,mainly aimed at C-3,C-6 and C-20,which provided a new perspective for the structural modification of PNS.Therefore,structural modification on PNS with high yield and ready availability are significant in the discovery of new active ingredients and industrialization.Derivatives of PNS are applied to research of structure-activity relationship,which is beneficial to the development of new medicines.展开更多
Objective:To discuss and compare the plasma pharmacokinetics after three oral Panax notoginseng saponin(PNS)administrations in beagle dogs.PNS is the main active ingredient of the traditional Chinese medicine(TCM)Pana...Objective:To discuss and compare the plasma pharmacokinetics after three oral Panax notoginseng saponin(PNS)administrations in beagle dogs.PNS is the main active ingredient of the traditional Chinese medicine(TCM)Panax notoginseng.Although its outstanding therapeutic efficacy has been demonstrated by various researchers,its broader application is restricted by the low bioavailability of PNS.Methods:An ultra-high performance liquid chromatographyetandem mass spectrometry(UPLC-MS/MS)method for the simultaneous quantification of notoginsenoside R1,ginsenoside Rg1,ginsenoside Rb1,ginsenoside Rd,and ginsenoside Re in beagle dog plasma was developed and validated.The plasma samples were subjected to liquideliquid extraction with acetone and methanol,and separated on an ACQUITY C18 column(100×2.1 mm ID,1.7 mm)using acetonitrile and water as the mobile phase with a run time of 4.5 min.Results:The analytes were detected without interference in Selected Reaction Monitoring mode with positive electrospray ionization.The validated method was successfully used in comparative pharmacokinetic studies of the five saponins in beagle dogs after oral administration of three PNS preparations.Blood samples were collected up to 192 h after administration and pharmacokinetic parameters were calculated using DAS 3.20 and SPSS 17.0.The AUC_(0-t)values of Re and R1 were significantly higher in soft capsules than in hard capsules.However,the AUC_(0-t)values between hard and soft capsules were not significantly different for the other three componentsdRb1,Rd and Rg1.Conclusion:Our intuitive analysis suggests that the bioavailability of PNS in soft capsules is greater than in hard capsules.展开更多
Chronic alcohol consumption induces hepatic steatosis, the early stage of alcoholic liver disease (ALD). The aim ofpresent study is to investigate the protective effect ofPanax notoginseng saponins (PNS) against c...Chronic alcohol consumption induces hepatic steatosis, the early stage of alcoholic liver disease (ALD). The aim ofpresent study is to investigate the protective effect ofPanax notoginseng saponins (PNS) against chronic ethanol-induced hepaticsteatosis in vivo. Mice were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol or isocaloric maltose dextrin ascontrol diet with or without PNS (200 mg/kg, BW) for 8 weeks. Animals supplemented with PNS were protected against hepaticlipid accumulation induced by chronic ethanol exposure. Accordingly, PNS could significantly decrease the elevation of plasmatriglyceride, plasma enzyme activities, i.e. alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and hepaticTNF-ct and IL-6 levels which were induced by chronic alcohol exposure. In addition, PNS markedly reduced the lipolysis ofwhite adipose tissue (WAT) that stimulated by alcohol feeding through the inhibiting protein expression of phosphorylation ofhormone-sensitive lipase (p-HSL), rather than total HSL. Furthermore, alcohol exposure also enhanced fatty acid uptake capacityin liver by elevated hepatic CD36 expression, which could attenuated by PNS treatment. These results demonstrate that PNSsupplementation protects against chronic ethanol-induced hepatic steatosis, which is associated with ameliorating dysfunctionallipid metabolism of WAT and the reduced inflammatory cytokines. Our findings suggested that PNS might be potential to bedeveloped as an effective agent for the treatment of chronic alcoholic steatosis.展开更多
Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Meth...Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.展开更多
Objective:To investigate the effects of panax notoginseng saponins(PNS) on homing of C-kit+ bone mesenchymal stem cells(BMSCs) to the infarction heart.Methods:The acute myocardial infraction(AMI) model was established...Objective:To investigate the effects of panax notoginseng saponins(PNS) on homing of C-kit+ bone mesenchymal stem cells(BMSCs) to the infarction heart.Methods:The acute myocardial infraction(AMI) model was established in 140 Wistar rats,105 model rats survived after operation,and the model rats were randomly divided into five groups,21 rats in each group:Western medicine group mobilized by subcutaneous injection of human granuloctye colony stimulating factor(G-CSF) 50 μg·kg-1·d-1;sham operation group and a model group treated by subcutaneous injection of normal saline 50 μg·kg-1·d-1;Chinese medicine group mobilized by intraperitoneal injection of Xuesaitong(血塞通)(ingredients of PNS) 150 mg·kg-1·d-1;integrative medicine group mobilized by subcutaneous injection of G-CSF 50 μg·kg-1·d-1 and intraperitoneal injection of Xuesaitong 150 mg·kg-1·d-1.Except for the sham-operated group,each group was divided into three sub-groups by three time points of 1 d,7 d and 14 d.G-CSF was injected once a day for 7 d.Xuesaitong was injected once a day until the rats were killed.The flow cytometry was used for detection of C-kit + cells in the peripheral blood in different time points,and immunohistochemical method was used for detection of the changes of C-kit + cell and Ki-67+ cell numbers in the marginal zone of AMI.Results:Twenty-four hours after the operation,C-kit + cells had a slight increase in the model group compared with the sham operation group(P>0.05).The peripheral blood C-kit+ cells in the integrative group increased significantly compared with the other groups on 7 d and 14 d(all P<0.05).Meanwhile the expression of C-kit + cells and Ki-67+ cells in the marginal zone of AMI in the integrative group increased significantly compared with the Chinese medicine group,the western medicine group and the model group on 1 d,7 d and 14 d(all P<0.05),and the cells in the integrative group decreased significantly on 14 d compared with that on 7 d(P<0.05).Conclusion:PNS can cooperate with G-CSF to mobilize C-kit+ BMSCs from the marrow into the peripheral blood and promote them "homing" to the infarction heart.展开更多
Gut microbiota dysbiosis is a risk factor for colorectal cancer(CRC) in inflammatory bowel disease(IBD).In this study, the effects of Panax notoginseng saponins(PNS) on colitis-associated CRC progression were evaluate...Gut microbiota dysbiosis is a risk factor for colorectal cancer(CRC) in inflammatory bowel disease(IBD).In this study, the effects of Panax notoginseng saponins(PNS) on colitis-associated CRC progression were evaluated on an azoxymethane(AOM)/dextran sulfate sodium(DSS) mouse model.In vivo, PNS significantly relieved AOM/DSS-induced colon tumorigenesis and development by reducing the disease activity index(DAI) scores and colon tumor load.The 16S rRNA data of fecal samples showed that the microbiome community was obviously destructed, while PNS could recover the richness and diversity of gut microbiota.Especially, PNS could increase the abundance of Akkermansia spp.which was significantly decreased in model group and negatively correlated with the progression of CRC.Moreover, ginsenoside compound K(GC-K) was evaluated on the effects of human CRC cells,which was the main bio-transformed metabolite of PNS by gut microbiota.Our data showed that PNS played important role in the prevention of the progression of CRC, due to their regulation on the microbiome balance and microbial bio-converted product with antiCRC activity.展开更多
Objective: To investigate the mechanism of Panax notoginseng saponins (PNS), an effective component extracted from Panax notoginseng, on atherosclerotic plaque angiogenesis in atherosclerosis-prone apolipoprotein E...Objective: To investigate the mechanism of Panax notoginseng saponins (PNS), an effective component extracted from Panax notoginseng, on atherosclerotic plaque angiogenesis in atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice fed with high-fat, high-cholesterol diet. Methods: Twenty ApoE-KO mice were divided into two groups, the model group and the PNS group. Ten normal C57BL/6J mice were used as a control group. PNS (60 mg/kg) was orally administered daily for 12 weeks in the PNS group, The ratio of plaque area to vessel area was examined by histological staining. The tissue sample of aortic root was used to detect the CD34 and vascular endothelial growth factor (VEGF) expression areas by immunohistochemistry. The expression of VEGF and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) were measured by reverse transcription polymerase chain reaction and Westem blotting respectively. Results: After treatment with PNS, the plaque areas were decreased (P〈0.05). CD34 expressing areas and VEGF expression areas in plaques were significantly decreased (P〈0.05). Meanwhile, VEGF and NOX4 mRNA expression were decreased after treatment with PNS, VEGF and NOX4 protein expression were also decreased by about 72% and 63%, respectively (P〈0.01). Conclusion: PNS, which decreases VEGF and NOX4 expression, could alleviate plaque angiogenesis and attenuate atherosclerosis.展开更多
Objective: To investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal ...Objective: To investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal pathway and GATA transcription factors in hematopoietic cells, so as to explore its mechanism of proliferation and differentiation activity on hematopoiesis. Methods: The human granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288 and Meg-01 cell lines were treated by PNS, the positive control of K562, CHRF-288 ceils treated by recombination human erythropoietin (Epo) and thrombopoietin (Tpo) respectively. The total cell lysate and nuclei protein were extracted after being treated by PNS, subsequently, analyzed by both Western blot and immune-precipitation. Meanwhile, the nuclei extract was performed for electrophoretic mobility shift assay (EMSA) by using 32p radio labeled double-stranded GATA consensus oligonucleotide. Results: The expression levels of kinase MEK-1, MEK-2, ERK-1, ERK-2, AKT-1, AKT-2 and PI- 3K were increased by PNS treatment to different extent in four cell lines, depending on cellular heterogeneity and sensitivity to PNS, also phosphorylation of MEK-1, ERK-1 was differentially promoted by PNS respectively (P〈0.05, 0.01, 0.001). The expression levels of transcription factors GATA-1 and GATA-2 were increased, moreover, their DNA binding activities were raised dramatically in PNS treated K562, CHRF-288 and Meg-01 cells compared with the controls respectively (P〈0.05, 0.01, 0.001). The positive control of K562, CHRF-288 cells treated by Epo or Tpo respectively also displayed up-regulation of protein kinases and GATA transcription factors respectively (P〈0.05, 0.01, 0.001). Conclusion: The results indicated that intracellular signal pathway initiated by PNS was involved in MAPK pathway and transcription factors of GATA family in hematopoietic cells. PNS displayed the role to promote proliferation and differentiation, by means of increasing expression level and phosphorylation status of multiple protein kinases, also inducing synthesis of GATA transcription factors and up- regulation its DNA binding activity.展开更多
Objective: To investigate the effects and possible mechanism of Panax Notoginseng saponins (PNS) on oxidative stress-induced damage and apoptosis in bone marrow stromal cells (BMSCs).Methods: BMSCs were isolated...Objective: To investigate the effects and possible mechanism of Panax Notoginseng saponins (PNS) on oxidative stress-induced damage and apoptosis in bone marrow stromal cells (BMSCs).Methods: BMSCs were isolated and cultured from 2-month-old New Zealand rabbits by the density gradient centrifugation combined with adherent method.The third passage cells were used for subsequent experiments.Oxidative stress was induced in cultured BMSCs by H2O2 (0.1 mmol/L).BMSCs were pretreated with 25-200 μg/mL PNS for 4 h before H2O2 treatment.Proliferation of BMSCs was observed using MTT assay.Alkaline phosphatase (ALP) activity,as an index of early osteoblastic differentiation,was determined with an ALP assay kit.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/ propidium iodide.Oxidative stress level was examined by reactive oxygen species (ROS) assay.The protein expressions of Bax,Bcl-2 and Caspase-3 in BMSCs were analyzed by Western blotting.Results: PNS had different concentrationdependent effects on proliferation and osteoblast differentiation of BMSCs induced by H2O2.A PNS concentration of 100 μg/mL was determined as the optimal effective concentration.PNS markedly attenuated H2O2-induced apoptosis rate from 41.91% to 14.67% (P〈0.01).PNS significantly decreased ROS level induced by H2O2 (P〈0.01).Furthermore,pretreatment with PNS significantly reversed H2O2-induced inhibition of Bcl-2 expression and augmentation of Bax and Caspase-3 expression (P〈0.01).Conclusion: PNS had a protective effect on oxidative stress-induced damage and apoptosis in cultured rabbit BMSCs through scavenging ROS and regulating the Bcl-2/Bax pathway.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012039)Guangzhou Science and Technology Plan Project(No.2024A03J0360).
文摘Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
文摘BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has been re- ported to exert protective effects against I/R injury to vari- ous organs. The objective of this study is to investigate whether PNS preconditioning protects rat liver grafts from I/R injury via an antiapoptotic pathway. METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation ( OLT) and were divided into PNS preconditioning group (group P) and normal saline control group (group N) randomly according to whether PNS (50 mg/kg) was injected intra- venously 1 hour before liver grafts harvesting, and sham group (group S). The animals were separately killed 2, 6 and 24 hours after reperfusion. Plasma samples were collect- ed for test of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Liver tissues were collected to de- tect histological changes, apoptosis and the expression of TNF-α, Bcl-2 and Caspase-3 mRNA. RESULTS: The serum levels of ALT and AST and the apop- tosis index (AI) of liver tissue in group P were lower than in group N significantly 2, 6 and 24 hours after reperfusion. Compared with group N, the expression of TNF-a and Caspase-3 mRNA was reduced significantly in group P 2 and 6 hours after reperfusion and the expression of Bcl-2 mRNA was enhanced significantly in group P 6 and 24 hours after reperfusion. CONCLUSIONS: PNS preconditioning protects liver grafts from I/R injury effectively in rat OLT via an antiapoptotic pathway. The antiapoptotic mechanisms of PNS may in- clude inhibiting the expression of TNF-a and Caspase-3 and enhancing the expression of Bcl-2.
基金Supported by: the National Natural Science Foundation of China, No. 30560189the Grant from Innovation Groupfor Developing Chinese HerbsNew Drugsamong University Talents in Guangxi
文摘BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were gavaged with 200 and 100 mg/kg PNS suspension, respectively. Huperzine A suspension (0.3 mg/kg) was used in the huperzine A group. Rats in the other 3 groups were gavaged with a corresponding volume of normal saline. In each group, administration was carried out once per day for 4 consecutive weeks. MAIN OUTCOME MEASURES: After administration, learning and memory abilities were measured by place navigation and spatial probe tests. Recording indices consisted of escape latency (time-to-platform), number of times to find the platform within 2 minutes, number of times the animal crosses the original platform location, and the percent of swimming time in each quadrant. RESULTS: Several rats died due to inflammatory reactions following brain lesion or intragastric administration; therefore, 61 rats were included in the final analysis. Results of spatial navigation test: Escape latency of rats in the model group was significantly prolonged, and number of times to find the platform within 2 minutes were significantly reduced compared with other groups (both P 〈 0.05). No significant differences in these two indices were measured among the administration groups (all P 〉 0.05). Results of spatial probe test: Times for crossing the original platform location and percent of time spent in the quadrant of original platform location were significantly less in the model group than in the other groups (P 〈 0.05). There were no significant differences in these two indices among the administration groups (P 〉 0.05). CONCLUSION: PNS can remarkably improve spatial learning and memory abilities of rats with AD. The therapeutic effect of PNS is not dose-dependent and is equivalent to the effect of huperzine A.
基金the National Natural Science Foundation of China, No.30300115
文摘BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.
文摘One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s disease using beta-amyloid(25-35)in PC12 cells,and treated the cells with Yizhijiannao Granule and its four monomers,i.e.,icariin,catechin,Panax notoginseng saponins,and eleutheroside E.Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin,Panax notoginseng saponins,and icariin+Panax notoginseng saponins were protective against beta-amyloid(25-35)-induced injury in PC12 cells.Icariin in combination with Panax notoginseng saponins significantly inhibited early apoptosis of PC12 cells with beta-amyloid (25-35)-induced injury compared to icariin or Panax notoginseng saponins alone.The effects of icariin+Panax notoginseng saponins were similar to the effects of Yizhijiannao Granule.The findings indicate that two of the effective monomers of Yizhijiannao Granule,icariin and Panax notoginseng saponins,can synergistically inhibit early apoptosis of PC12 cells induced by beta-amyloid(25-35).
基金supported by the National Natural Science Foundation of China(No.30600624)
文摘Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbits were isolated and cultured by the density gradient centrifugation combined with adherent method.The cultured BMSCs were divided into three groups:normal control,H2O2 treatment(100μmol/L),and PNS pretreatment(0.1g/L).Intracellular reactive oxygen species(ROS)levels as the index of oxidative stress were measured by using 2’7’-dichlorodihydrofluorescein diacetate.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/PI.The protein expression of Bax in BMSCs was analyzed by Western blotting.Activity of caspase-3 enzyme was measured by spectrofluorometry.Results Pretreatment with PNS significantly decreased intracellular ROS level induced by H2O2(P<0.01).PNS markedly attenuated H2O2-induced apoptosis rate from 38.68% to 19.24%(P<0.01).PNS reversed H2O2-induced augmentation of Bax expression.Furthermore,PNS markedly reduced the altered in activity of caspase-3 enzyme induced by H2O2(P<0.01).Conclusion PNS has a protective effect on hydrogen peroxide-induced apoptosis in cultured rabbit BMSCs by scavenging ROS and decreasing Bax expression and caspase-3 activity.
文摘Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function.
基金supported by National Natural Science Foundation of China (30600624)
文摘Objective: To investigate the effects of Panax notoginseng saponins (PNS) on hydrogen peroxide (H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells (BMSCs). Methods: The effects of different concentrations of PNS on proliferation and early osteoblast differentiation of BMSCs were determined by the MTT assay and an alkaline phosphatase (ALP) assay. An optimal effective concentration of PNS was determined and used in subsequent experiments. The cultured BMSCs were divided into three groups: untreated control, H2O2 treated, and PNS pretreatment of H2O2 treated. The oxidative stress level was assessed by superoxide dismutase (SOD) and malondialdehyde (MDA) assays. Flow cytometry was used to determine BMSC apoptosis by staining with annexinV-FITC/propidium iodide (PI). The activity of caspase-3 enzyme was measured by spectrofluorometry. Results: PNS (0.1g/L) significantly increased both BMSC proliferation rate and ALP activity, while it decreased the indicators of oxidative stress, caspase-3 activity, and the apoptosis rate of BMSCs induced by H2O2.. Conclusion: PNS, acting as a biological antioxidant, had a protective effect on H2O2-induced apoptosis in cultured rabbit BMSCs by decreasing oxidative stress and down-regulating caspase-3.
基金National Natural Science Foundation of China Project(Project No.81904049)Regional Collaborative Innovation Center of Tibetan Medicine(Project No.2017XTCX012,2018XTCX014)Young Elite Scientists Sponsorship Program by CAST(Project No.CACM-2018-QNRCC2-C06).
文摘Background:Panax notoginseng saponins(PNS)is extracted from Sanqi(Panax notoginseng),which is a valuable herb and has been widely used in traditional Chinese medicine for the treatment of cerebrovascular diseases and pain.PNS has been proved to promote blood circulation and angiogenesis by inhibiting platelet aggregation.In our previous study,PNS accompanied with geniposide can prevent Alzheimer’s disease(AD).However,the efficacy of PNS and its potential mechanism in AD remain unclear.Methods:Amyloid precursor protein/presenilin-1(APP/PS1)transgenic(Tg)mice were used as AD-like animal models.Wild-type mice and APP/PS1 transgenic were administrated with saline solution while mice in PNS treatment group were administrated with PNS at a dosage of 17 mg/kg/day for three months.Morris water maze(MWM)was applied to evaluate the spatial learning and memory and step-down test was used to evaluate the cognitive function.1%Thioflavin-S staining was used to calculate the average number amyloid plaques in cortex and hippocampus.CD31 staining was detected to observe the density of cerebrovascular in hippocampus areas and CD105 staining was further detected to evaluate angiogenesis.Laser Doppler PeriFlux 5000 was further measured the change of cerebrovascular blood flow.ChemDraw was used to draw the molecular structures of five main ingredients of PNS.AlzPlatform were used to estimate the potential targets of PNS.Results:By a bench of behavioral tests,PNS showed a better tendency in proving cognitive functions.In addition,the amyloid plaques in both cortex and hippocampus were significantly reduced after PNS intervention(P<0.05 and P<0.001 respectively).Furthermore,the density of cerebrovascular in the hippocampus areas was increased under PNS administration(P<0.001),which accompanied with angiogenesis in dentate gyrus areas and cerebrovascular blood flow promotion(P<0.05).By AlzPlatform docking serve,we screened five major ingredients of PNS-R1,Rd,Rb1,Re and Rg1.These screening data suggested that vascular related proteins could be the one of potential targets of PNS,such as platelet activating factor receptor and vasopressin V1a receptor.Conclusion:By modulating cerebrovascular function,PNS can reduce the deposition of amyloid plaques and exhibit the role of neuroprotection in a preventive strategy.
文摘Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.
基金Supported by High-level Talent Training Program for Graduate Students of Tibet University(2020-GSP-B014)National Natural Science Foundation of China(81560589)Yunnan Provincial Department of Science and Technology-Kunming Medical University Applied Basic Research Joint Special Fund(2017FE468-001)。
文摘This paper reviews recent progress in the structural modification and activities on Panax notoginseng saponins(PNS).PNS can not only improve the function of cardio-cerebral system,central nervous system and immune system,but also reveal anticancer,anti-aging and anti-oxidation activities.In order to solve the problem of low bioavailability and poor absorbability of PNS in vivo,usually,the researchers modified the structure of PNS with three methods:glycoside cleavage(including acid hydrolysis,sulfation,etc.),biotransformation method(including enzyme hydrolysis,microbial transformation)and combinatorial chemical method.It was found that the structural modification sites of PNS were single,mainly aimed at C-3,C-6 and C-20,which provided a new perspective for the structural modification of PNS.Therefore,structural modification on PNS with high yield and ready availability are significant in the discovery of new active ingredients and industrialization.Derivatives of PNS are applied to research of structure-activity relationship,which is beneficial to the development of new medicines.
基金This workwas financially supported by the National Science and Technology Major Project for Essential Drug Research and Development(No.2014ZX09301306-009)the National Science and Technology Major Project for Essential Drug Research and Development(No.2014ZX09301306-008).
文摘Objective:To discuss and compare the plasma pharmacokinetics after three oral Panax notoginseng saponin(PNS)administrations in beagle dogs.PNS is the main active ingredient of the traditional Chinese medicine(TCM)Panax notoginseng.Although its outstanding therapeutic efficacy has been demonstrated by various researchers,its broader application is restricted by the low bioavailability of PNS.Methods:An ultra-high performance liquid chromatographyetandem mass spectrometry(UPLC-MS/MS)method for the simultaneous quantification of notoginsenoside R1,ginsenoside Rg1,ginsenoside Rb1,ginsenoside Rd,and ginsenoside Re in beagle dog plasma was developed and validated.The plasma samples were subjected to liquideliquid extraction with acetone and methanol,and separated on an ACQUITY C18 column(100×2.1 mm ID,1.7 mm)using acetonitrile and water as the mobile phase with a run time of 4.5 min.Results:The analytes were detected without interference in Selected Reaction Monitoring mode with positive electrospray ionization.The validated method was successfully used in comparative pharmacokinetic studies of the five saponins in beagle dogs after oral administration of three PNS preparations.Blood samples were collected up to 192 h after administration and pharmacokinetic parameters were calculated using DAS 3.20 and SPSS 17.0.The AUC_(0-t)values of Re and R1 were significantly higher in soft capsules than in hard capsules.However,the AUC_(0-t)values between hard and soft capsules were not significantly different for the other three componentsdRb1,Rd and Rg1.Conclusion:Our intuitive analysis suggests that the bioavailability of PNS in soft capsules is greater than in hard capsules.
基金Research Committee of the University of Macao(Grant No.MYRG123-ICMS12 and MYRG111-ICMS13)from Macao Science and Technology Development Fund(Grant No.010/2013/A1)
文摘Chronic alcohol consumption induces hepatic steatosis, the early stage of alcoholic liver disease (ALD). The aim ofpresent study is to investigate the protective effect ofPanax notoginseng saponins (PNS) against chronic ethanol-induced hepaticsteatosis in vivo. Mice were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol or isocaloric maltose dextrin ascontrol diet with or without PNS (200 mg/kg, BW) for 8 weeks. Animals supplemented with PNS were protected against hepaticlipid accumulation induced by chronic ethanol exposure. Accordingly, PNS could significantly decrease the elevation of plasmatriglyceride, plasma enzyme activities, i.e. alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and hepaticTNF-ct and IL-6 levels which were induced by chronic alcohol exposure. In addition, PNS markedly reduced the lipolysis ofwhite adipose tissue (WAT) that stimulated by alcohol feeding through the inhibiting protein expression of phosphorylation ofhormone-sensitive lipase (p-HSL), rather than total HSL. Furthermore, alcohol exposure also enhanced fatty acid uptake capacityin liver by elevated hepatic CD36 expression, which could attenuated by PNS treatment. These results demonstrate that PNSsupplementation protects against chronic ethanol-induced hepatic steatosis, which is associated with ameliorating dysfunctionallipid metabolism of WAT and the reduced inflammatory cytokines. Our findings suggested that PNS might be potential to bedeveloped as an effective agent for the treatment of chronic alcoholic steatosis.
基金Supported by National Natural Science Foundation of China(No.81102557)Doctoral Program Foundation of Higher Education of China(No.20104323110001)+4 种基金Key Project of Hunan Province Education Department(No.08A050)Aid Project for Innovation Platform Open Fund of Hunan Province University(No.11K050 and No.14K068)Key Project of Administration of Traditional Chinese Medicine of Hunan Province(No.201301)General Project of Science and Technology Department of Hunan Province(No.2014SK3001)General Project of Education Bureau of Hunan Province(No.11C0963)
文摘Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.
基金supported by Important National Basic Research Program of China (973 Program, N0.2003CB517103)China Postdoctoral Foundation (No. 20070410129)
文摘Objective:To investigate the effects of panax notoginseng saponins(PNS) on homing of C-kit+ bone mesenchymal stem cells(BMSCs) to the infarction heart.Methods:The acute myocardial infraction(AMI) model was established in 140 Wistar rats,105 model rats survived after operation,and the model rats were randomly divided into five groups,21 rats in each group:Western medicine group mobilized by subcutaneous injection of human granuloctye colony stimulating factor(G-CSF) 50 μg·kg-1·d-1;sham operation group and a model group treated by subcutaneous injection of normal saline 50 μg·kg-1·d-1;Chinese medicine group mobilized by intraperitoneal injection of Xuesaitong(血塞通)(ingredients of PNS) 150 mg·kg-1·d-1;integrative medicine group mobilized by subcutaneous injection of G-CSF 50 μg·kg-1·d-1 and intraperitoneal injection of Xuesaitong 150 mg·kg-1·d-1.Except for the sham-operated group,each group was divided into three sub-groups by three time points of 1 d,7 d and 14 d.G-CSF was injected once a day for 7 d.Xuesaitong was injected once a day until the rats were killed.The flow cytometry was used for detection of C-kit + cells in the peripheral blood in different time points,and immunohistochemical method was used for detection of the changes of C-kit + cell and Ki-67+ cell numbers in the marginal zone of AMI.Results:Twenty-four hours after the operation,C-kit + cells had a slight increase in the model group compared with the sham operation group(P>0.05).The peripheral blood C-kit+ cells in the integrative group increased significantly compared with the other groups on 7 d and 14 d(all P<0.05).Meanwhile the expression of C-kit + cells and Ki-67+ cells in the marginal zone of AMI in the integrative group increased significantly compared with the Chinese medicine group,the western medicine group and the model group on 1 d,7 d and 14 d(all P<0.05),and the cells in the integrative group decreased significantly on 14 d compared with that on 7 d(P<0.05).Conclusion:PNS can cooperate with G-CSF to mobilize C-kit+ BMSCs from the marrow into the peripheral blood and promote them "homing" to the infarction heart.
基金supported by the National Natural Scientific Foundation of China(No.81903784)Key Research and Development Plan of Hunan Province(No.2018sk2129)Hunan Provincial Natural Science Foundation of China(No.2020JJ4878)。
文摘Gut microbiota dysbiosis is a risk factor for colorectal cancer(CRC) in inflammatory bowel disease(IBD).In this study, the effects of Panax notoginseng saponins(PNS) on colitis-associated CRC progression were evaluated on an azoxymethane(AOM)/dextran sulfate sodium(DSS) mouse model.In vivo, PNS significantly relieved AOM/DSS-induced colon tumorigenesis and development by reducing the disease activity index(DAI) scores and colon tumor load.The 16S rRNA data of fecal samples showed that the microbiome community was obviously destructed, while PNS could recover the richness and diversity of gut microbiota.Especially, PNS could increase the abundance of Akkermansia spp.which was significantly decreased in model group and negatively correlated with the progression of CRC.Moreover, ginsenoside compound K(GC-K) was evaluated on the effects of human CRC cells,which was the main bio-transformed metabolite of PNS by gut microbiota.Our data showed that PNS played important role in the prevention of the progression of CRC, due to their regulation on the microbiome balance and microbial bio-converted product with antiCRC activity.
基金Supported by the Plans for the Development of Traditional Chinese Medicine Science and Technology of Shandong Province(No.2011-203)
文摘Objective: To investigate the mechanism of Panax notoginseng saponins (PNS), an effective component extracted from Panax notoginseng, on atherosclerotic plaque angiogenesis in atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice fed with high-fat, high-cholesterol diet. Methods: Twenty ApoE-KO mice were divided into two groups, the model group and the PNS group. Ten normal C57BL/6J mice were used as a control group. PNS (60 mg/kg) was orally administered daily for 12 weeks in the PNS group, The ratio of plaque area to vessel area was examined by histological staining. The tissue sample of aortic root was used to detect the CD34 and vascular endothelial growth factor (VEGF) expression areas by immunohistochemistry. The expression of VEGF and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) were measured by reverse transcription polymerase chain reaction and Westem blotting respectively. Results: After treatment with PNS, the plaque areas were decreased (P〈0.05). CD34 expressing areas and VEGF expression areas in plaques were significantly decreased (P〈0.05). Meanwhile, VEGF and NOX4 mRNA expression were decreased after treatment with PNS, VEGF and NOX4 protein expression were also decreased by about 72% and 63%, respectively (P〈0.01). Conclusion: PNS, which decreases VEGF and NOX4 expression, could alleviate plaque angiogenesis and attenuate atherosclerosis.
基金Supported by National Natural Science Foundation of China (No.30070933)
文摘Objective: To investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal pathway and GATA transcription factors in hematopoietic cells, so as to explore its mechanism of proliferation and differentiation activity on hematopoiesis. Methods: The human granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288 and Meg-01 cell lines were treated by PNS, the positive control of K562, CHRF-288 ceils treated by recombination human erythropoietin (Epo) and thrombopoietin (Tpo) respectively. The total cell lysate and nuclei protein were extracted after being treated by PNS, subsequently, analyzed by both Western blot and immune-precipitation. Meanwhile, the nuclei extract was performed for electrophoretic mobility shift assay (EMSA) by using 32p radio labeled double-stranded GATA consensus oligonucleotide. Results: The expression levels of kinase MEK-1, MEK-2, ERK-1, ERK-2, AKT-1, AKT-2 and PI- 3K were increased by PNS treatment to different extent in four cell lines, depending on cellular heterogeneity and sensitivity to PNS, also phosphorylation of MEK-1, ERK-1 was differentially promoted by PNS respectively (P〈0.05, 0.01, 0.001). The expression levels of transcription factors GATA-1 and GATA-2 were increased, moreover, their DNA binding activities were raised dramatically in PNS treated K562, CHRF-288 and Meg-01 cells compared with the controls respectively (P〈0.05, 0.01, 0.001). The positive control of K562, CHRF-288 cells treated by Epo or Tpo respectively also displayed up-regulation of protein kinases and GATA transcription factors respectively (P〈0.05, 0.01, 0.001). Conclusion: The results indicated that intracellular signal pathway initiated by PNS was involved in MAPK pathway and transcription factors of GATA family in hematopoietic cells. PNS displayed the role to promote proliferation and differentiation, by means of increasing expression level and phosphorylation status of multiple protein kinases, also inducing synthesis of GATA transcription factors and up- regulation its DNA binding activity.
基金Supported by National Natural Science Foundation of China(No.30600624)
文摘Objective: To investigate the effects and possible mechanism of Panax Notoginseng saponins (PNS) on oxidative stress-induced damage and apoptosis in bone marrow stromal cells (BMSCs).Methods: BMSCs were isolated and cultured from 2-month-old New Zealand rabbits by the density gradient centrifugation combined with adherent method.The third passage cells were used for subsequent experiments.Oxidative stress was induced in cultured BMSCs by H2O2 (0.1 mmol/L).BMSCs were pretreated with 25-200 μg/mL PNS for 4 h before H2O2 treatment.Proliferation of BMSCs was observed using MTT assay.Alkaline phosphatase (ALP) activity,as an index of early osteoblastic differentiation,was determined with an ALP assay kit.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/ propidium iodide.Oxidative stress level was examined by reactive oxygen species (ROS) assay.The protein expressions of Bax,Bcl-2 and Caspase-3 in BMSCs were analyzed by Western blotting.Results: PNS had different concentrationdependent effects on proliferation and osteoblast differentiation of BMSCs induced by H2O2.A PNS concentration of 100 μg/mL was determined as the optimal effective concentration.PNS markedly attenuated H2O2-induced apoptosis rate from 41.91% to 14.67% (P〈0.01).PNS significantly decreased ROS level induced by H2O2 (P〈0.01).Furthermore,pretreatment with PNS significantly reversed H2O2-induced inhibition of Bcl-2 expression and augmentation of Bax and Caspase-3 expression (P〈0.01).Conclusion: PNS had a protective effect on oxidative stress-induced damage and apoptosis in cultured rabbit BMSCs through scavenging ROS and regulating the Bcl-2/Bax pathway.