In the present study, we established an UPLC-QTOF-MSE based metabolomic approach in order to evaluate the holistic qualities and compare the quality difference by finding characteristic components of Panax notoginseng...In the present study, we established an UPLC-QTOF-MSE based metabolomic approach in order to evaluate the holistic qualities and compare the quality difference by finding characteristic components of Panax notoginseng extracts (PNE) and Xuesaitong (XST) injection samples from different manufacturers. The data were processed through unsupervised principal component analysis (PCA) and supervised orthogonal partial least squared discrimination analysis (OPLS-DA) to compare the quality differences. Two-dimensional PCA score plots showed a tendency to separate the XST injections and extracts, and most XST injection samples were clearly clustered into two groups. Especially, the injections from He and YB companies were distinguished into two groups. In addition, only injection samples of Hu company were near the cluster of PNE. To explore the potential chemical components contributing most to the differences between XST injection samples from different manufacturers and PNE, an S-plot was constructed following the OPLS-DA. Ginsenoside Rd, ginsenoside Rgl, ginsenoside Re, ginsenoside Rbl, 20(S)-ginsenoside Rhl, gypenoside VII, ginsenoside Rg2, ginsenoside Rh4, ginsenoside Rkl or Rgs, notoginsenoside Fc, 20(R)-ginsenoside Rg3, ginsenoside F2 and protopanaxadiol were recognized as characteristic chemical markers that contributed most to reflect the difference between XST injections and PNE. Ginsenoside Rd, ginsenoside Rgl, ginsenoside Re, ginsenoside Rbl and gypenoside VII were revealed as index components contributing most to the differences of PNE and XST injections, and quantitative analysis of these components could ensure the consistent quality of XST injections. Based on the fact that the injections should be standardized with the characteristic components as quality control chemical markers, it is most important to keep the quality of extracts of raw materials stable and reliable.展开更多
Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separat...Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separation of total saponins of P. notoginseng . The extraction methods of total saponins of P. notoginseng are mainly divided into traditional extraction methods, modern extraction methods and compound extraction methods.展开更多
Traditional extraction methods of total saponins of Panax notoginseng include cold soaking method,water decoction method,alcohol reflux method,percolation method,macroporous resin adsorption method,and accelerated sol...Traditional extraction methods of total saponins of Panax notoginseng include cold soaking method,water decoction method,alcohol reflux method,percolation method,macroporous resin adsorption method,and accelerated solvent extraction( ASE) method. Modern extraction methods include ultrasonic extraction,microwave assisted extraction,supercritical CO_2 extraction,microbial fermentation assisted extraction,neural network model optimized extraction method,and multi-stage countercurrent extraction method. This paper discussed principles of these methods and compared their advantages and disadvantages.展开更多
Objective: This paper takes the example of a Panax notoginseng extraction workshop and designs an automated production workshop with advanced domestic capabilities. Methods: 1) Based on the small-scale Panax notoginse...Objective: This paper takes the example of a Panax notoginseng extraction workshop and designs an automated production workshop with advanced domestic capabilities. Methods: 1) Based on the small-scale Panax notoginseng extraction process, the feasibility of the workshop production process is demonstrated. 2) The workshop process design for Panax Notoginseng saponin extraction is completed, including production organization plans and the selection of key equipment. 3) For the Panax notoginseng extraction workshop process, an automated production control system is designed. Conclusion: Through optimized design of the production process and automation system, continuous and automated production of traditional Chinese medicine extraction is achieved, leading to improvements in drug quality and production efficiency.展开更多
Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the cont...Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the contents of ginsengsides Rg1,Rb1,and notoginsengside R1 as evaluation indexes.Methods Different parts of P.notoginseng were extracted by smashing tissue extraction(STE),ultrasound extraction,and reflux extraction.The contents of ginsengsides Rg1,Rb1,and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV.Hypersil C18 column(200 mm × 4.6 mm,5 μm) and acetonitrile-warter(20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used;UV detector was set at 203 nm;The flow rate was set at 1.0 mL/min.Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies.Conclusion STE is a fast,effective,and economical method to extract the active saponins from different parts of P.notoginseng.It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P.notoginseng.Such quick and effective extraction provides a powerful tool for analyzing P.notoginseng in the future.展开更多
Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Meth...Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.展开更多
文摘In the present study, we established an UPLC-QTOF-MSE based metabolomic approach in order to evaluate the holistic qualities and compare the quality difference by finding characteristic components of Panax notoginseng extracts (PNE) and Xuesaitong (XST) injection samples from different manufacturers. The data were processed through unsupervised principal component analysis (PCA) and supervised orthogonal partial least squared discrimination analysis (OPLS-DA) to compare the quality differences. Two-dimensional PCA score plots showed a tendency to separate the XST injections and extracts, and most XST injection samples were clearly clustered into two groups. Especially, the injections from He and YB companies were distinguished into two groups. In addition, only injection samples of Hu company were near the cluster of PNE. To explore the potential chemical components contributing most to the differences between XST injection samples from different manufacturers and PNE, an S-plot was constructed following the OPLS-DA. Ginsenoside Rd, ginsenoside Rgl, ginsenoside Re, ginsenoside Rbl, 20(S)-ginsenoside Rhl, gypenoside VII, ginsenoside Rg2, ginsenoside Rh4, ginsenoside Rkl or Rgs, notoginsenoside Fc, 20(R)-ginsenoside Rg3, ginsenoside F2 and protopanaxadiol were recognized as characteristic chemical markers that contributed most to reflect the difference between XST injections and PNE. Ginsenoside Rd, ginsenoside Rgl, ginsenoside Re, ginsenoside Rbl and gypenoside VII were revealed as index components contributing most to the differences of PNE and XST injections, and quantitative analysis of these components could ensure the consistent quality of XST injections. Based on the fact that the injections should be standardized with the characteristic components as quality control chemical markers, it is most important to keep the quality of extracts of raw materials stable and reliable.
基金Supported by Traditional Chinese Medicine Standardization Project of State Administration of Traditional Chinese Medicine(ZYBZH-C-YN-58)Scientific and Technological Planning Project of Yunnan Provincial Department of Science and Technology(2107ZF001)
文摘Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separation of total saponins of P. notoginseng . The extraction methods of total saponins of P. notoginseng are mainly divided into traditional extraction methods, modern extraction methods and compound extraction methods.
基金Supported by the 12 th Five-Year TCM Key Discipline Chinese Medicine Chemistry Construction Program of State Administration of Traditional Chinese Medicine(Guo Zhong Yi Yao Ren Jiao Fa[2012]32)Key Discipline Chinese Medicine Chemistry Construction Program of Guangxi(Gui Jiao Ke Yan[2013]16)+2 种基金Natural Science Foundation Project of Guangxi(2013GXNSFAA019240)Program of Key Laboratory of Guangxi Universities on National Medicine in Youjiang River Basin(Gui Jiao Ke Yan[2014]14)Innovation and Entrepreneurship Ethnical Medicine Teaching Team Program of Guangxi Zhuang Autonomous Region(Gui Jiao Gao Jiao[2015]93&Gui Jiao Gao Jiao[2016]6)
文摘Traditional extraction methods of total saponins of Panax notoginseng include cold soaking method,water decoction method,alcohol reflux method,percolation method,macroporous resin adsorption method,and accelerated solvent extraction( ASE) method. Modern extraction methods include ultrasonic extraction,microwave assisted extraction,supercritical CO_2 extraction,microbial fermentation assisted extraction,neural network model optimized extraction method,and multi-stage countercurrent extraction method. This paper discussed principles of these methods and compared their advantages and disadvantages.
文摘Objective: This paper takes the example of a Panax notoginseng extraction workshop and designs an automated production workshop with advanced domestic capabilities. Methods: 1) Based on the small-scale Panax notoginseng extraction process, the feasibility of the workshop production process is demonstrated. 2) The workshop process design for Panax Notoginseng saponin extraction is completed, including production organization plans and the selection of key equipment. 3) For the Panax notoginseng extraction workshop process, an automated production control system is designed. Conclusion: Through optimized design of the production process and automation system, continuous and automated production of traditional Chinese medicine extraction is achieved, leading to improvements in drug quality and production efficiency.
文摘Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the contents of ginsengsides Rg1,Rb1,and notoginsengside R1 as evaluation indexes.Methods Different parts of P.notoginseng were extracted by smashing tissue extraction(STE),ultrasound extraction,and reflux extraction.The contents of ginsengsides Rg1,Rb1,and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV.Hypersil C18 column(200 mm × 4.6 mm,5 μm) and acetonitrile-warter(20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used;UV detector was set at 203 nm;The flow rate was set at 1.0 mL/min.Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies.Conclusion STE is a fast,effective,and economical method to extract the active saponins from different parts of P.notoginseng.It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P.notoginseng.Such quick and effective extraction provides a powerful tool for analyzing P.notoginseng in the future.
基金Supported by National Natural Science Foundation of China(No.81102557)Doctoral Program Foundation of Higher Education of China(No.20104323110001)+4 种基金Key Project of Hunan Province Education Department(No.08A050)Aid Project for Innovation Platform Open Fund of Hunan Province University(No.11K050 and No.14K068)Key Project of Administration of Traditional Chinese Medicine of Hunan Province(No.201301)General Project of Science and Technology Department of Hunan Province(No.2014SK3001)General Project of Education Bureau of Hunan Province(No.11C0963)
文摘Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.