Objective To evaluate the effects of acute glucose level changes on expression of prepro-orexin, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) mRNA in rat hypothalamus tissue and pancreatic islets cells. Metho...Objective To evaluate the effects of acute glucose level changes on expression of prepro-orexin, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) mRNA in rat hypothalamus tissue and pancreatic islets cells. Methods Thirty adult male Wistar rats were randomly divided into three equal groups (n = 10). The acute hypoglycemia rat model was induced by a single subcutaneous injection of insulin. Twenty acute hypoglycemia rats were divided into group B and group C. Group B was allowed to eat freely, while group C was food-deprived. Control rats were injected the same volume of saline. The effect of glucose levels (2.8 mmol/L and 8.3 mmol/L) on pancreatic islet cell orexin system was detected in pancreas islet cell cultured in vitro. The expression of prepro-orexin and OXR mRNA was examined in rat hypothalamus tissue and pancreatic islets cell cultured in vitro using reverse transcription-polymerase chain reaction (RT-PCR). Results Expression of orexin mRNA increased about 150% for the food-deprived hypoglycemia rats in comparison with control group (P < 0.01), whereas expression of OX1R mRNA decreased up to 30% (P < 0.01). However, expression of OX2R mRNA was unchanged in comparison with control group. In vitro, after incubation with 2.8 mmol/L glucose for 6 hours, the expression of prepro-orexin mRNA increased 2 times in rat pancreas islet cells in comparison with 8.3 mmol/L glucose group (P < 0.01). But the expression of OX1R mRNA was not sensitive to acute glucose fluctuation.Conclusions Orexin in rat hypothalamus is stimulated by decline in blood glucose and inhibited by signals related to feeding. Moreover, glucose plays a role in modulating the gene expression of prepro-orexin in rat pancreatic islet cells.展开更多
Stem cells are undifferentiated cells capable of self-renewal and differentiation,giving rise to specialized functional cells.Stem cells are of pivotal importance for organ and tissue development,homeostasis,and injur...Stem cells are undifferentiated cells capable of self-renewal and differentiation,giving rise to specialized functional cells.Stem cells are of pivotal importance for organ and tissue development,homeostasis,and injury and disease repair.Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required.They are usually named based on the resident tissue,such as hematopoietic stem cells and germline stem cells.This review discusses the recent advances in stem cells of various tissues,including neural stem cells,muscle stem cells,liver progenitors,pancreatic islet stem/progenitor cells,intestinal stem cells,and prostate stem cells,and the future perspectives for tissue stem cell research.展开更多
基金Supported by Important FinancialIssueof Shi-Wu Programming Key Problem in Liaoning Provinceand Financial Issue for Scientific Research in the Department of Education.
文摘Objective To evaluate the effects of acute glucose level changes on expression of prepro-orexin, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) mRNA in rat hypothalamus tissue and pancreatic islets cells. Methods Thirty adult male Wistar rats were randomly divided into three equal groups (n = 10). The acute hypoglycemia rat model was induced by a single subcutaneous injection of insulin. Twenty acute hypoglycemia rats were divided into group B and group C. Group B was allowed to eat freely, while group C was food-deprived. Control rats were injected the same volume of saline. The effect of glucose levels (2.8 mmol/L and 8.3 mmol/L) on pancreatic islet cell orexin system was detected in pancreas islet cell cultured in vitro. The expression of prepro-orexin and OXR mRNA was examined in rat hypothalamus tissue and pancreatic islets cell cultured in vitro using reverse transcription-polymerase chain reaction (RT-PCR). Results Expression of orexin mRNA increased about 150% for the food-deprived hypoglycemia rats in comparison with control group (P < 0.01), whereas expression of OX1R mRNA decreased up to 30% (P < 0.01). However, expression of OX2R mRNA was unchanged in comparison with control group. In vitro, after incubation with 2.8 mmol/L glucose for 6 hours, the expression of prepro-orexin mRNA increased 2 times in rat pancreas islet cells in comparison with 8.3 mmol/L glucose group (P < 0.01). But the expression of OX1R mRNA was not sensitive to acute glucose fluctuation.Conclusions Orexin in rat hypothalamus is stimulated by decline in blood glucose and inhibited by signals related to feeding. Moreover, glucose plays a role in modulating the gene expression of prepro-orexin in rat pancreatic islet cells.
基金supported by grants from the National Natural Science Foundation of China(31988101 and 31730056 to YGC32125013 and 81772723 to DG+15 种基金32170804 to PH31930030 to LH91732301,31671072,31771140,81891001,91432111,81527901,31400977,31625013 to XW31625020,31830056,31861163006 to YAZ)the Ministry of Science and Technology of China(2017YFA0103601 to YGC2020YFA0509000,2017YFA0505500 to DG2017YFA0102700 to PH2019YFA0802001,2019YFA0801503 to LH2017YFA0102601,2019YFA0110100 to XW2020YFA0509002,2019YFA0802002 to YAZ)the Strategic Priority Research Program of the Chinese Academy of Science(XDA16020400 to PHXDA16020200 to YAZ)the Shanghai Science and Technology Commission(21XD1424200,21ZR1470100 to DG)the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-SM015 to DG)Space Medical Experiment Project of China Manned Space Program(HYZHXM01017 to PH)the Grants of Beijing Brain Initiative of Beijing Municipal Science&Technology Commission(Z181100001518004 to XW)。
文摘Stem cells are undifferentiated cells capable of self-renewal and differentiation,giving rise to specialized functional cells.Stem cells are of pivotal importance for organ and tissue development,homeostasis,and injury and disease repair.Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required.They are usually named based on the resident tissue,such as hematopoietic stem cells and germline stem cells.This review discusses the recent advances in stem cells of various tissues,including neural stem cells,muscle stem cells,liver progenitors,pancreatic islet stem/progenitor cells,intestinal stem cells,and prostate stem cells,and the future perspectives for tissue stem cell research.