Ca2+has an important role in the maintenance of the skeleton and is involved in the main physiological processes.Its homeostasis is controlled by the intestine,kidney,bone and parathyroid glands.The intestinal Ca2+abs...Ca2+has an important role in the maintenance of the skeleton and is involved in the main physiological processes.Its homeostasis is controlled by the intestine,kidney,bone and parathyroid glands.The intestinal Ca2+absorption occurs mainly via the paracellular and the transcellular pathways.The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors.Fibroblast growth factor 23(FGF-23)is a strong antagonist of vitamin D action.Part of the intestinal Ca2+movement seems to be vitamin D independent.Intestinal Ca2+absorption changes according to different physiological conditions.It is promoted under high Ca2+demands such as growth,pregnancy,lactation,dietary Ca2+deficiency and high physical activity.In contrast,the intestinal Ca2+transport decreases with aging.Oxidative stress inhibits the intestinal Ca2+absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process.Several pathologies such as celiac disease,inflammatory bowel diseases,Turner syndrome and others occur with inhibition of intestinal Ca2+absorption,some hypercalciurias show Ca2+hyperabsorption,most of these alterations are related to the vitamin D endocrine system.Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+absorption.展开更多
The disequilibrium between the production of reactive oxygen(ROS) and nitrogen(RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-produ...The disequilibrium between the production of reactive oxygen(ROS) and nitrogen(RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione(GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DLbuthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.展开更多
Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GS...Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione or vitamin K3, sodium deoxycholate or diets enriched in fructose, which induce several features of the metabolic syndrome, produce inhibition of the intestinal Ca2+ ab-sorption. The GSH depleting drugs switch the redox state towards an oxidant condition provoking oxida-tive/nitrosative stress and inflammation, which lead to apoptosis and/or autophagy of the enterocytes. Either the transcellular Ca transport or the paracellular Ca route are altered by GSH depleting drugs. The gene and/or protein expression of transporters involved in the transcellular Ca2+ pathway are decreased. The favonoids quercetin and naringin highly abrogate the inhibition of intestinal Ca2+ absorption, not only by restoration of the GSH levels in the intestine but also by their anti-apoptotic properties. Ursodeoxycholic acid, melatonin and glutamine also block the inhibition of Ca2+ transport caused by GSH depleting drugs. The use of any of these antioxidants to ameliorate the intestinal Ca2+ absorption under oxidant conditions associated with different pathologies in humans requires more investigation with regards to the safety,pharmacokinetics and pharmacodynamics of them.展开更多
基金Supported by Consejo Nacional de Investigaciones Científicas y Tecnológicas,Argentina PIP 2017-2019,No.11220170100012COSecretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba,Argentina(Programa 2018-2019),No.30920180100056CB。
文摘Ca2+has an important role in the maintenance of the skeleton and is involved in the main physiological processes.Its homeostasis is controlled by the intestine,kidney,bone and parathyroid glands.The intestinal Ca2+absorption occurs mainly via the paracellular and the transcellular pathways.The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors.Fibroblast growth factor 23(FGF-23)is a strong antagonist of vitamin D action.Part of the intestinal Ca2+movement seems to be vitamin D independent.Intestinal Ca2+absorption changes according to different physiological conditions.It is promoted under high Ca2+demands such as growth,pregnancy,lactation,dietary Ca2+deficiency and high physical activity.In contrast,the intestinal Ca2+transport decreases with aging.Oxidative stress inhibits the intestinal Ca2+absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process.Several pathologies such as celiac disease,inflammatory bowel diseases,Turner syndrome and others occur with inhibition of intestinal Ca2+absorption,some hypercalciurias show Ca2+hyperabsorption,most of these alterations are related to the vitamin D endocrine system.Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+absorption.
基金Supported by Dr.Nori Tolosa de Talamoni from CONICET,No.PIP 2013-2015 and No.SECYT(UNC)2016,Argentina
文摘The disequilibrium between the production of reactive oxygen(ROS) and nitrogen(RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione(GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DLbuthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.
文摘Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione or vitamin K3, sodium deoxycholate or diets enriched in fructose, which induce several features of the metabolic syndrome, produce inhibition of the intestinal Ca2+ ab-sorption. The GSH depleting drugs switch the redox state towards an oxidant condition provoking oxida-tive/nitrosative stress and inflammation, which lead to apoptosis and/or autophagy of the enterocytes. Either the transcellular Ca transport or the paracellular Ca route are altered by GSH depleting drugs. The gene and/or protein expression of transporters involved in the transcellular Ca2+ pathway are decreased. The favonoids quercetin and naringin highly abrogate the inhibition of intestinal Ca2+ absorption, not only by restoration of the GSH levels in the intestine but also by their anti-apoptotic properties. Ursodeoxycholic acid, melatonin and glutamine also block the inhibition of Ca2+ transport caused by GSH depleting drugs. The use of any of these antioxidants to ameliorate the intestinal Ca2+ absorption under oxidant conditions associated with different pathologies in humans requires more investigation with regards to the safety,pharmacokinetics and pharmacodynamics of them.