Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition lay...Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.展开更多
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthe...Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.展开更多
Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the...Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.展开更多
Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic...Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furf...To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.展开更多
By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentrati...By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentration was obtained by the internal standard methed. The normal paraffin hydrocarbon distribution patterns of six crude oils were built and compared. The cluster analysis on the normal paraffin hydrocarbon concentration was conducted for classification and some ratios of oils were used for oils comparison. The results indicated: there was a clear difference within different crude oils in different oil fields and a small difference between the crude oils in the same oil platform. The normal paraffin hydrocarbon distribution pattern and ratios, as well as the cluster analysis on the nomad paraffin hydrocarbon concentration can have a better differentiation result for the crude oils with small difference than the original gas chromatogram.展开更多
BACKGROUND Small bowel bezoar obstruction(SBBO)is a rare clinical condition characterized by hard fecal masses in the small intestine,causing intestinal obstruction.It occurs more frequently in the elderly and bedridd...BACKGROUND Small bowel bezoar obstruction(SBBO)is a rare clinical condition characterized by hard fecal masses in the small intestine,causing intestinal obstruction.It occurs more frequently in the elderly and bedridden patients,but can also affect those with specific gastrointestinal dysfunctions.Diagnosing SBBO is challenging due to its clinical presentation,which mimics other intestinal obstructions.While surgical intervention is the typical treatment for SBBO,advancements in endo-scopic techniques have led to increased use of non-surgical methods,such as endoscopic lithotripsy.CASE SUMMARY We report a case of small bowel obstruction induced by a phytobezoar.A 49-year-old male with a history of type 2 diabetes and long-term persimmon consumption presented to the hospital with symptoms of vomiting,abdominal distension,and constipation.Computed tomography revealed a small bowel obstruction with foreign bodies.Double balloon enteroscopy identified a phytobezoar blocking the intestinal lumen.The bezoar was successfully fragmented using a snare,and the fragments were treated with 100 mL of paraffin oil to facilitate their passage.This case report aims to enhance the understanding of this rare condition by detailing the clinical presentation,diagnostic process,and treatment outcomes of a patient with SBBO.Special attention is given to the application and effectiveness of non-surgical treatment methods,along with strategies to optimize patient manage-ment.CONCLUSION Double balloon enteroscopy combined with sequential laxative therapy is an effective approach for the treatment of a breakable phytobezoar.展开更多
Upgrading heavy and residual oils into valuable lighter fuels has attracted much attention due to growing worldwide demand for light petroleum product. This study focused on hydrocracking process for atmospheric resid...Upgrading heavy and residual oils into valuable lighter fuels has attracted much attention due to growing worldwide demand for light petroleum product. This study focused on hydrocracking process for atmospheric residue (AR) of Mongolian crude oil in the first time compared to those of other countries. Residue samples were hydrocracked with a commercial catalyst at 450℃, 460℃, 470℃ for 2 hours under hydrogen pressure of 10 MPa. The AR conversion and yield of light fraction (LF) reached to 90.6 wt% and 53.9 wt%, at 470℃ by the hydrocracking for atmospheric residue of Tamsagbulag crude oil (TBAR). In each sample, the yield of MF was the highest at 460℃ temperature, which is valuable lighter fuel product. The polyaromatic, polar hydrocarbons and sulfur compounds were concentrated in the MF and HF because the large amount of light hydrocarbons produced from TBAR as the increasing of the hydrocracking temperature. The content of n-paraffinic hydrocarbons was decreased in HF of TBAR, on effect of hydrocracking temperature. This result suggests the longer molecules of n-paraffin (С20-С32) in HF were reacted better, than middle molecules of n-paraffin (С12-С20) in MF during the hydrocracking reaction. Because the hydrocarbon components of feed crude oils were various, the contents of n-paraffinic hydrocarbons in MF and HF of TBAR and DQAR were similar, but MEAR’s was around 2 times lower and the hydrogen consumption was the highest for the MEAR after hydrocracking.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+2 种基金CNPC Innovation Found(Grant No.2022DQ02-0501),Changzhou Applied Basic Research Program(Grant No.CJ20230030)The major project of universities affiliated with Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project。
文摘Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.
文摘Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.
文摘Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.
文摘Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
文摘To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.
基金the National Natural Science Foundation of China under contract No.49976027 the Important Topic of Scientific Research of the State 0ceanic Administration, China, on the construction system of oil fingerprinting database and the key technology (from 2004 to 2005 ).
文摘By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corre- sponding normal paraffin hydrocarbon ( including pristane and phytane) concentration was obtained by the internal standard methed. The normal paraffin hydrocarbon distribution patterns of six crude oils were built and compared. The cluster analysis on the normal paraffin hydrocarbon concentration was conducted for classification and some ratios of oils were used for oils comparison. The results indicated: there was a clear difference within different crude oils in different oil fields and a small difference between the crude oils in the same oil platform. The normal paraffin hydrocarbon distribution pattern and ratios, as well as the cluster analysis on the nomad paraffin hydrocarbon concentration can have a better differentiation result for the crude oils with small difference than the original gas chromatogram.
文摘BACKGROUND Small bowel bezoar obstruction(SBBO)is a rare clinical condition characterized by hard fecal masses in the small intestine,causing intestinal obstruction.It occurs more frequently in the elderly and bedridden patients,but can also affect those with specific gastrointestinal dysfunctions.Diagnosing SBBO is challenging due to its clinical presentation,which mimics other intestinal obstructions.While surgical intervention is the typical treatment for SBBO,advancements in endo-scopic techniques have led to increased use of non-surgical methods,such as endoscopic lithotripsy.CASE SUMMARY We report a case of small bowel obstruction induced by a phytobezoar.A 49-year-old male with a history of type 2 diabetes and long-term persimmon consumption presented to the hospital with symptoms of vomiting,abdominal distension,and constipation.Computed tomography revealed a small bowel obstruction with foreign bodies.Double balloon enteroscopy identified a phytobezoar blocking the intestinal lumen.The bezoar was successfully fragmented using a snare,and the fragments were treated with 100 mL of paraffin oil to facilitate their passage.This case report aims to enhance the understanding of this rare condition by detailing the clinical presentation,diagnostic process,and treatment outcomes of a patient with SBBO.Special attention is given to the application and effectiveness of non-surgical treatment methods,along with strategies to optimize patient manage-ment.CONCLUSION Double balloon enteroscopy combined with sequential laxative therapy is an effective approach for the treatment of a breakable phytobezoar.
文摘Upgrading heavy and residual oils into valuable lighter fuels has attracted much attention due to growing worldwide demand for light petroleum product. This study focused on hydrocracking process for atmospheric residue (AR) of Mongolian crude oil in the first time compared to those of other countries. Residue samples were hydrocracked with a commercial catalyst at 450℃, 460℃, 470℃ for 2 hours under hydrogen pressure of 10 MPa. The AR conversion and yield of light fraction (LF) reached to 90.6 wt% and 53.9 wt%, at 470℃ by the hydrocracking for atmospheric residue of Tamsagbulag crude oil (TBAR). In each sample, the yield of MF was the highest at 460℃ temperature, which is valuable lighter fuel product. The polyaromatic, polar hydrocarbons and sulfur compounds were concentrated in the MF and HF because the large amount of light hydrocarbons produced from TBAR as the increasing of the hydrocracking temperature. The content of n-paraffinic hydrocarbons was decreased in HF of TBAR, on effect of hydrocracking temperature. This result suggests the longer molecules of n-paraffin (С20-С32) in HF were reacted better, than middle molecules of n-paraffin (С12-С20) in MF during the hydrocracking reaction. Because the hydrocarbon components of feed crude oils were various, the contents of n-paraffinic hydrocarbons in MF and HF of TBAR and DQAR were similar, but MEAR’s was around 2 times lower and the hydrogen consumption was the highest for the MEAR after hydrocracking.