期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于音素解码的语种识别系统联合自适应算法研究 被引量:3
1
作者 邓妍 张卫强 刘加 《自动化学报》 EI CSCD 北大核心 2012年第4期652-658,共7页
针对真实环境下的语种识别,信道类型和通话内容等非语种方面因素的不同都会造成测试和训练条件的不匹配,从而影响系统的识别性能.本文以音素识别器后接向量空间模型(Phone recognizer followed by vectorspace model,PRVSM)为语种识别系... 针对真实环境下的语种识别,信道类型和通话内容等非语种方面因素的不同都会造成测试和训练条件的不匹配,从而影响系统的识别性能.本文以音素识别器后接向量空间模型(Phone recognizer followed by vectorspace model,PRVSM)为语种识别系统,引入联合自适应算法来解决系统中测试和训练条件的失配问题.研究了三种自适应方法用于系统的不同阶段:1)基于受约束的最大似然线性回归(Constr ained maximum likelihood linear regression,CMLLR)的声学模型自适应;2)基于全局N元文法的音位特征向量自适应;3)VSM模型中的支持向量机(Support vector machines,SVM)自适应.在综合采用多种自适应技术后,PRVSM系统的性能有了较大的提高,在NIST LRE 2009测试库上对于30s、10s和3s的测试段,基于不同音素识别器的PRVSM系统的等错误率(Equal errorrate,EER)分别相对降低了18%~23%、12%~20%以及5%~9%. 展开更多
关键词 语种识别 音素识别器后接向量空间模型 联合自适应 受约束的最大似然线性回归 支持向量机自适应
下载PDF
基于SVM一对多得分规整的语种识别方法
2
作者 王宪亮 袁庆升 +4 位作者 包秀国 张健 万玉龙 周若华 颜永红 《网络新媒体技术》 2015年第6期27-30,47,共5页
提出一种支持向量机(SVM)一对多得分规整的语种识别方法。通过对SVM得分进行规整,提高了各语种得分间的区分性,同时对分类效果较差的SVM分类器更鲁棒。仿真实验基于音素层特征的并行音素识别器后接向量空间模型(PPRVSM)的语种识别系统... 提出一种支持向量机(SVM)一对多得分规整的语种识别方法。通过对SVM得分进行规整,提高了各语种得分间的区分性,同时对分类效果较差的SVM分类器更鲁棒。仿真实验基于音素层特征的并行音素识别器后接向量空间模型(PPRVSM)的语种识别系统上进行,在美国国家标准技术署(NIST)2011年语种识别评测(LRE)30s数据集上的实验表明,提出的规整方法在语种识别性能评价指标EER和min DCF上相对提升2.6%-10.9%。 展开更多
关键词 支持向量机 得分规整 并行音素识别器后接向量空间模型
下载PDF
基于鉴别性向量空间模型的语种识别 被引量:1
3
作者 刘巍巍 张卫强 刘加 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期796-799,共4页
传统语种识别中训练数据库的规模庞大,对于语种分类有鉴别性的信息大量重叠,且训练数据的不同信道条件、不同来源都会对训练和测试有一定干扰。针对这些问题,提出一种鉴别性向量空间模型(D-VSMs)建模方法。D-VSMs能够自动过滤训练集中... 传统语种识别中训练数据库的规模庞大,对于语种分类有鉴别性的信息大量重叠,且训练数据的不同信道条件、不同来源都会对训练和测试有一定干扰。针对这些问题,提出一种鉴别性向量空间模型(D-VSMs)建模方法。D-VSMs能够自动过滤训练集中信息重叠的数据,使得每一个支持向量机的训练数据都有针对性,从而用较少的训练数据能取得较好的分类效果。在美国国家标准技术局(NIST)2009年语种识别测试中,D-VSMs只用了原训练数据的25%,计算量是传统并行音素识别器后接向量空间模型(PPRVSM)的10%,等错误率在30s、10s和3s的测试条件下分别比传统PPRVSM下降了12.75%、15.89%以及7.33%。 展开更多
关键词 语种识别 鉴别性向量空间模型(D-VSMs) 并行音素识别器后接向量空间模型(PPRVSM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部