If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers...If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.展开更多
文摘If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.