Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop pl...Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.展开更多
Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has t...Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has the potential to affect the safety of design and operation of heat transfer equipment. Flow instability is therefore undesirable and should be avoided?in the design and operation of industrial equipment. Rahman?et al. reviewed studies on supercritical water heat transfer with the aim of providing references for SCWR researchers. It was found out that most of the CFD studies and experimental studies were performed with single tube geometry due to the complexity of parallel channel geometry. Because studies performed with parallel channel geometry could provide detailed information to the design of the SCWR core, they called for more studies in parallel channel geometry at supercritical pressures in the future. In order to help understand how flow instability investigations are carried out and also highlight the need to understand flow instability phenomenon and equip the designers and operators of industrial heat transfer equipment with the needed knowledge on flow instability, this study carried out a review of flow instability in parallel channels with water at supercritical pressures.展开更多
Previous analytical results on flow splitting are generalized to consider multiple boiling channels systems. The analysis is consistent with the approximations usually adopted in the use of systems codes (like RELAP5 ...Previous analytical results on flow splitting are generalized to consider multiple boiling channels systems. The analysis is consistent with the approximations usually adopted in the use of systems codes (like RELAP5 and TRACE5, among others) commonly applied to perform safety analyses of nuclear power plants. The problem is related to multiple, identical, parallel boiling channels, connected through common plena. A theoretical model limited in scope explains this flow splitting without reversal. The unified analysis performed and the confirmatory computational results found are summarized in this paper. New maps showing the zones where this behavior is predicted are also shown considering again twin pipes. Multiple pipe systems have been found not easily amenable for analytical analysis when dealing with more than four parallel pipes. However, the particular splitting found (flow along N pipes dividing in one standalone pipe flow plus N -1 identical pipe flows) has been verified up to fourteen pipes, involving calculations in systems with even and odd number of pipes using the RELAP5 systems thermal-hydraulics code.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally s...Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally studied for supercritical fluids. Two types of flow excursion occur in a single tube. Type Ⅰ and Type Ⅱ excursions, and they are corresponding to decreasing and increasing flow rate respectively. They can trigger flow maldistribution between parallel tubes and the hysteresis phenomenon of flow distribution. The effects of system parameters, including inlet temperature,system pressure, and heat flux, on flow distribution were analyzed. In addition, the relationship between flow excursion and the pseudo-critical interval proposed in the literature was established according to the heated tube outlet temperature at the onset of flow instability. Finally, the flow excursion instability boundary was obtained using two dimensionless parameters. These experimental results can provide helpful insight on the mechanism of Scramjet regenerative cooling.展开更多
In this study,the flow pattern and bubble behavior of R1233zd(E)during subcooled flow boiling in parallel channels are experimentally investigated with visualization and thermal measurement.The test section is compose...In this study,the flow pattern and bubble behavior of R1233zd(E)during subcooled flow boiling in parallel channels are experimentally investigated with visualization and thermal measurement.The test section is composed of 21 rectangular mini channels with the hydraulic diameter of 1.5 mm and the length of 140 mm.Bubbly flow,slug flow,churn flow and wavy-annular flow occur in sequence with the increase of vapor quality,while transient flow pattern transition process involving multiple flow patterns are also captured.The distribution of flow pattern is non-synchronized and axial-asymmetric,with earlier flow pattern transitions observed in peripheral channels away from the center axis.The initial nucleate site in each channel also show a random and axial-asymmetric distribution,while faster bubble growth can be noted in some channel under the comprehensive effects of liquid evaporation and bubble coalescence.The variation of heat transfer coefficient is correspondence to the flow pattern transition,showing different trends along the flow direction.The increase of mass flux can lead to delayed flow pattern transition and variation of heat transfer coefficient.In addition,higher heat transfer coefficient can be noted in channels away from the center axis.展开更多
This paper proposes a non linear mathematical model of two phase flow instability in parallel channels of a boiling system. Close agreement is obtained between calculations based on this model and measurements of th...This paper proposes a non linear mathematical model of two phase flow instability in parallel channels of a boiling system. Close agreement is obtained between calculations based on this model and measurements of the stable boundary in a system of two channels. The model is also applied to the cases of three and four parallel channels.展开更多
Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying fi...Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%-70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs- the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer( dry burning) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24 W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.展开更多
Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal...Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.展开更多
In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. An...In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. Analytical expressions are obtained by choosing the axial velocity;temperature distribution and the normal velocity of the blood depend on y and t only to convert the system of partial differential equations into system of ordinary differential equations under the conditions defined in our model. The model has been analyzed to find the effects of various parameters such as, Hartmann number, heat source parameter and Prandtl number on the axial velocity, temperature distribution and the normal velocity. The numerical solutions of axial velocity, temperature distributions and normal velocity are shown graphically for better understanding of the problem. Hence, the present mathematical model gives a simple form of axial velocity, temperature distribution and normal velocity of the blood flow so that it will help not only people working in the field of Physiological fluid dynamics but also to the medical practitioners.展开更多
We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a unifo...We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.展开更多
BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[...BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[1].Recently, the BK channels have展开更多
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current...We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.展开更多
In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a ...In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.展开更多
There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not...There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel block fading channels, criteria of codes design for not fully connected channels are proposed and are compared with Tarokh's criteria for fully connected channel. New codes for such channels are provided by systematical and exhaustive search. Simulation results show that these codes offer better performance on parallel FDM channels than other known codes.展开更多
Two tests of refilling and reflooding in the horizontal geometry channel under different pressure conditions,respectively,are conducted to understand the thermal hydraulics behavior during a LOCA in the CANDU reactor....Two tests of refilling and reflooding in the horizontal geometry channel under different pressure conditions,respectively,are conducted to understand the thermal hydraulics behavior during a LOCA in the CANDU reactor.One case of refilling a hot horizontal tube test and four cases of reflooding a horizontal fuel channel test series (35%and 60%break size of reactor inlet header with single-end injection or both-end injection,respectively) have been simulated.The horizontal channel is simulated with the model splitting as parallel pipes with cross flow junction component.The simulation results have been compared with the tests in terms of wall temperature or heated-pin surface temperature.The results are reasonably acceptable and it shows that the code is applicable on horizontal channel quenching.展开更多
The steady, asymmetric and two-dimensional flow of viscous, incompressible and Newtonian fluid through a rectangular channel with splitter plate parallel to walls is investigated numerically. Earlier, the position of ...The steady, asymmetric and two-dimensional flow of viscous, incompressible and Newtonian fluid through a rectangular channel with splitter plate parallel to walls is investigated numerically. Earlier, the position of the splitter plate was taken as a centreline of channel but here it is considered its different positions which cause the asymmetric behaviour of the flow field. The geometric parameter that controls the position of splitter is defined as splitter position parameter a. The plane Poiseuille flow is considered far from upstream and downstream of the splitter. This flow-problem is solved numerically by a numerical scheme comprising a fourth order method, followed by a special finite-method. This numerical scheme transforms the governing equations to system of finite-difference equations, which are solved by point S.O.R. iterative method. In addition, the results obtained are further refined and upgraded by Richardson Extrapolation method. The calculations are carried out for the ranges -1 α R < 10<sup>5</sup>. The results are compared with existing literature regarding the symmetric case (when a = 0) for velocity, vorticity and skin friction distributions. The comparison is very favourable. Moreover, the notable thing is that the decay of vorticity to its downstream value takes place over an increasingly longer scale of x as R increases for symmetric case but it is not so for asymmetric one.展开更多
基金Project(51306198)supported by the National Natural Science Foundation of ChinaProject(NR2013K07)supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,China+1 种基金Project(331614013)supported by Beijing University of Civil Engineering and Architecture,ChinaProject(00921915023)supported by Organization Department of Beijing,China
文摘Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.
文摘Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has the potential to affect the safety of design and operation of heat transfer equipment. Flow instability is therefore undesirable and should be avoided?in the design and operation of industrial equipment. Rahman?et al. reviewed studies on supercritical water heat transfer with the aim of providing references for SCWR researchers. It was found out that most of the CFD studies and experimental studies were performed with single tube geometry due to the complexity of parallel channel geometry. Because studies performed with parallel channel geometry could provide detailed information to the design of the SCWR core, they called for more studies in parallel channel geometry at supercritical pressures in the future. In order to help understand how flow instability investigations are carried out and also highlight the need to understand flow instability phenomenon and equip the designers and operators of industrial heat transfer equipment with the needed knowledge on flow instability, this study carried out a review of flow instability in parallel channels with water at supercritical pressures.
文摘Previous analytical results on flow splitting are generalized to consider multiple boiling channels systems. The analysis is consistent with the approximations usually adopted in the use of systems codes (like RELAP5 and TRACE5, among others) commonly applied to perform safety analyses of nuclear power plants. The problem is related to multiple, identical, parallel boiling channels, connected through common plena. A theoretical model limited in scope explains this flow splitting without reversal. The unified analysis performed and the confirmatory computational results found are summarized in this paper. New maps showing the zones where this behavior is predicted are also shown considering again twin pipes. Multiple pipe systems have been found not easily amenable for analytical analysis when dealing with more than four parallel pipes. However, the particular splitting found (flow along N pipes dividing in one standalone pipe flow plus N -1 identical pipe flows) has been verified up to fourteen pipes, involving calculations in systems with even and odd number of pipes using the RELAP5 systems thermal-hydraulics code.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金co-supported by the Open Fund of Key Laboratory of Power Research of China(No.2017-Ⅲ-0005-0029)the National Natural Science Foundation of China(No.51776167).
文摘Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally studied for supercritical fluids. Two types of flow excursion occur in a single tube. Type Ⅰ and Type Ⅱ excursions, and they are corresponding to decreasing and increasing flow rate respectively. They can trigger flow maldistribution between parallel tubes and the hysteresis phenomenon of flow distribution. The effects of system parameters, including inlet temperature,system pressure, and heat flux, on flow distribution were analyzed. In addition, the relationship between flow excursion and the pseudo-critical interval proposed in the literature was established according to the heated tube outlet temperature at the onset of flow instability. Finally, the flow excursion instability boundary was obtained using two dimensionless parameters. These experimental results can provide helpful insight on the mechanism of Scramjet regenerative cooling.
基金Honeywell International Inc,China for the financial and material supports provided in this studythe financial support from National Natural Science Foundation of China (52076193)
文摘In this study,the flow pattern and bubble behavior of R1233zd(E)during subcooled flow boiling in parallel channels are experimentally investigated with visualization and thermal measurement.The test section is composed of 21 rectangular mini channels with the hydraulic diameter of 1.5 mm and the length of 140 mm.Bubbly flow,slug flow,churn flow and wavy-annular flow occur in sequence with the increase of vapor quality,while transient flow pattern transition process involving multiple flow patterns are also captured.The distribution of flow pattern is non-synchronized and axial-asymmetric,with earlier flow pattern transitions observed in peripheral channels away from the center axis.The initial nucleate site in each channel also show a random and axial-asymmetric distribution,while faster bubble growth can be noted in some channel under the comprehensive effects of liquid evaporation and bubble coalescence.The variation of heat transfer coefficient is correspondence to the flow pattern transition,showing different trends along the flow direction.The increase of mass flux can lead to delayed flow pattern transition and variation of heat transfer coefficient.In addition,higher heat transfer coefficient can be noted in channels away from the center axis.
文摘This paper proposes a non linear mathematical model of two phase flow instability in parallel channels of a boiling system. Close agreement is obtained between calculations based on this model and measurements of the stable boundary in a system of two channels. The model is also applied to the cases of three and four parallel channels.
基金Project 51306198 supported by National Natural Science Foundation of ChinaProject 00921915023 supported by Organization Department of Beijing+1 种基金Project NR2013K07 supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning EngineeringProject 331614013 supported by Beijing University of Civil Engineering and Architecture
文摘Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%-70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs- the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer( dry burning) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24 W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.
文摘Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.
文摘In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. Analytical expressions are obtained by choosing the axial velocity;temperature distribution and the normal velocity of the blood depend on y and t only to convert the system of partial differential equations into system of ordinary differential equations under the conditions defined in our model. The model has been analyzed to find the effects of various parameters such as, Hartmann number, heat source parameter and Prandtl number on the axial velocity, temperature distribution and the normal velocity. The numerical solutions of axial velocity, temperature distributions and normal velocity are shown graphically for better understanding of the problem. Hence, the present mathematical model gives a simple form of axial velocity, temperature distribution and normal velocity of the blood flow so that it will help not only people working in the field of Physiological fluid dynamics but also to the medical practitioners.
文摘We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.
基金supported by Natural Science Foundation of China grants10732070,10602031
文摘BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[1].Recently, the BK channels have
文摘We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.
文摘In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.
基金Supported by the National Natural Science Foundation of China(No.60496311).
文摘There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel block fading channels, criteria of codes design for not fully connected channels are proposed and are compared with Tarokh's criteria for fully connected channel. New codes for such channels are provided by systematical and exhaustive search. Simulation results show that these codes offer better performance on parallel FDM channels than other known codes.
基金Supported by grant of Doctoral Fund of Ministry of Education of China(20090073110034)
文摘Two tests of refilling and reflooding in the horizontal geometry channel under different pressure conditions,respectively,are conducted to understand the thermal hydraulics behavior during a LOCA in the CANDU reactor.One case of refilling a hot horizontal tube test and four cases of reflooding a horizontal fuel channel test series (35%and 60%break size of reactor inlet header with single-end injection or both-end injection,respectively) have been simulated.The horizontal channel is simulated with the model splitting as parallel pipes with cross flow junction component.The simulation results have been compared with the tests in terms of wall temperature or heated-pin surface temperature.The results are reasonably acceptable and it shows that the code is applicable on horizontal channel quenching.
文摘The steady, asymmetric and two-dimensional flow of viscous, incompressible and Newtonian fluid through a rectangular channel with splitter plate parallel to walls is investigated numerically. Earlier, the position of the splitter plate was taken as a centreline of channel but here it is considered its different positions which cause the asymmetric behaviour of the flow field. The geometric parameter that controls the position of splitter is defined as splitter position parameter a. The plane Poiseuille flow is considered far from upstream and downstream of the splitter. This flow-problem is solved numerically by a numerical scheme comprising a fourth order method, followed by a special finite-method. This numerical scheme transforms the governing equations to system of finite-difference equations, which are solved by point S.O.R. iterative method. In addition, the results obtained are further refined and upgraded by Richardson Extrapolation method. The calculations are carried out for the ranges -1 α R < 10<sup>5</sup>. The results are compared with existing literature regarding the symmetric case (when a = 0) for velocity, vorticity and skin friction distributions. The comparison is very favourable. Moreover, the notable thing is that the decay of vorticity to its downstream value takes place over an increasingly longer scale of x as R increases for symmetric case but it is not so for asymmetric one.