Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The swi...Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.展开更多
Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the c...Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.展开更多
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ...A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.展开更多
The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship bet...The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship between K-aberration and word length pattern is developed.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainti...The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.展开更多
Robust Parameter Design(RPD) has been widely applied for improving quality and reliability of products.One of the key drawbacks of applying RPD using Taguchi method is that the stable factors may not be independent of...Robust Parameter Design(RPD) has been widely applied for improving quality and reliability of products.One of the key drawbacks of applying RPD using Taguchi method is that the stable factors may not be independent of the adjustment factors, resulting in unsatisfactory design.Moreover, the Taguchi method cannot guarantee global optimality since the levels set in the experiment are usually discrete to ensure orthogonal design.In this paper, robust solutions of the stable factors are obtained via a nonlinear model based on polynomial fitting;while the adjustment factors are obtained via interactions analysis so that they are independent of the stable factors.In particular, the values of the adjustment factors are determined by output offset compensation so as to achieve robustness of the design scheme.An example on the design of an aeronautical electrical apparatus is presented to illustrate the procedure.The results show that the proposed method can take full advantage of the nonlinearity in the response and achieve the desired outcome.展开更多
In this paper we will show a general method of how to make an optimized parameter design of a circular e+e- Higgs factory by using analytical expression of maximum beam-beam parameter and beamstrahlung beam lifetime ...In this paper we will show a general method of how to make an optimized parameter design of a circular e+e- Higgs factory by using analytical expression of maximum beam-beam parameter and beamstrahlung beam lifetime starting from a given design goal and technical limitations. A parameter space has been explored. Based on beam parameters scan and RF parameters scan, a set of optimized parameter designs for 50 km Circular Higgs Factory (CHF) with different RF frequency was proposed.展开更多
Stope mining design is a very important and complicated task in daily production design and technical management of an underground mine.Based on workface technology and human-computer interaction technology,this study...Stope mining design is a very important and complicated task in daily production design and technical management of an underground mine.Based on workface technology and human-computer interaction technology,this study introduces a method of 3D parametric design for the irregular structure of stope bottoms,and focuses on solving technical problems in surface modeling of stope bottom structure.Optimization of the minimum span length algorithm(MSLA) and the shortest path search algorithm(SPSA) is conducted to solve the problem of contour-line based instant modeling of stope bottom structures,which makes possible the 3D parametric design for irregular structure of stope bottom.Implementation process and relevant methods of the proposed algorithms are also presented.Feasibility and reliability of the proposed modeling method are testified in a case study.In practice,the proposed 3 D parameterization design method for irregular structure stope bottom proves to be very helpful to precise 3D parametric design.This method is capable of contributing to improved efficiency and precision of stope design,and is worthy of promotion.展开更多
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) co...To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.展开更多
Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self...Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.展开更多
An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original rel...An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap,the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively.展开更多
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi...A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.展开更多
Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the mod...Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.展开更多
The main contests of mire optimization design includes: mine field size, borizon and level height, mumber, shaft form and development disposal and so on. In this paper, based on mine dynamic analysis, the index functi...The main contests of mire optimization design includes: mine field size, borizon and level height, mumber, shaft form and development disposal and so on. In this paper, based on mine dynamic analysis, the index function model of mine different development stage is built up,applying dynamic programming method to find the solution of system’s optimum value,which makes the optimized result of mine dynamic design parameter more comprehensive, sysematical and reasonable. Through theory analysis research and practical validation, the obtained design parameters are reasonable and accurate.展开更多
There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters eac...There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.展开更多
A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimizati...A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.展开更多
Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials....Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.展开更多
An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneu...An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneuvering performances, this paper proposes the parameters ωA,ωs, and SEP to measure the maneuvering performances. The linear weighted method, which is one of the basic methods of transforming several objects to a single object in mathematics programming, is used to determine the form of the correlating parameter expression. The focal point of this paper's work is to determine the weight coefficients of maneuvering performances in the expression. In order to solve this problem, the inverse problem of synthetic judgement in fuzzy mathematics is employed. The development of the equation of fuzzy relationship in this paper is based on the judgement data, which are gathered from many experts working in aeronautical field. Therefore, the expression of correlating parameter developed by this paper can be used in the design object at aircraft conceptual design stage and the judgement of synthetical measurement of the maneuverability of fighters.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No Y105175)the Science Investigation Foundation of Hangzhou Dianzi University, China (Grant No KYS051505010)
文摘Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.
基金supported by the National Natural Science Foundation of China(1127120511271355+2 种基金11101024 and 11171165)the "131" Talents Program of Tianjinthe Fundamental Research Funds for the Central Universities(65030011 and 65011361)
文摘Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.
文摘A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.
文摘The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship between K-aberration and word length pattern is developed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
基金Supported by the National Natural Science Foundation of China(No.52071306)the Natural Science Foundation of Shandong Province(No.ZR2019MEE050)。
文摘The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.
基金co-supported by the National Natural Science Foundation of China(Nos.51707044 and 61671172)the China Postdoctoral Science Foundation(No.2018M632377)。
文摘Robust Parameter Design(RPD) has been widely applied for improving quality and reliability of products.One of the key drawbacks of applying RPD using Taguchi method is that the stable factors may not be independent of the adjustment factors, resulting in unsatisfactory design.Moreover, the Taguchi method cannot guarantee global optimality since the levels set in the experiment are usually discrete to ensure orthogonal design.In this paper, robust solutions of the stable factors are obtained via a nonlinear model based on polynomial fitting;while the adjustment factors are obtained via interactions analysis so that they are independent of the stable factors.In particular, the values of the adjustment factors are determined by output offset compensation so as to achieve robustness of the design scheme.An example on the design of an aeronautical electrical apparatus is presented to illustrate the procedure.The results show that the proposed method can take full advantage of the nonlinearity in the response and achieve the desired outcome.
基金Supported by National Foundation of Natural Sciences(11175192)
文摘In this paper we will show a general method of how to make an optimized parameter design of a circular e+e- Higgs factory by using analytical expression of maximum beam-beam parameter and beamstrahlung beam lifetime starting from a given design goal and technical limitations. A parameter space has been explored. Based on beam parameters scan and RF parameters scan, a set of optimized parameter designs for 50 km Circular Higgs Factory (CHF) with different RF frequency was proposed.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA060407)Yunnan Province Science and Technology Innovation Platform Construction Plans,China(No.2010DH005)
文摘Stope mining design is a very important and complicated task in daily production design and technical management of an underground mine.Based on workface technology and human-computer interaction technology,this study introduces a method of 3D parametric design for the irregular structure of stope bottoms,and focuses on solving technical problems in surface modeling of stope bottom structure.Optimization of the minimum span length algorithm(MSLA) and the shortest path search algorithm(SPSA) is conducted to solve the problem of contour-line based instant modeling of stope bottom structures,which makes possible the 3D parametric design for irregular structure of stope bottom.Implementation process and relevant methods of the proposed algorithms are also presented.Feasibility and reliability of the proposed modeling method are testified in a case study.In practice,the proposed 3 D parameterization design method for irregular structure stope bottom proves to be very helpful to precise 3D parametric design.This method is capable of contributing to improved efficiency and precision of stope design,and is worthy of promotion.
文摘To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
文摘Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.
基金Supported by National Nature Science Foundation of China(21327901,11375199)
文摘An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap,the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively.
文摘A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.
基金the National Natural Science Foundation of China (No:70572044)New Central Elitist(No:04-0240)
文摘Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.
文摘The main contests of mire optimization design includes: mine field size, borizon and level height, mumber, shaft form and development disposal and so on. In this paper, based on mine dynamic analysis, the index function model of mine different development stage is built up,applying dynamic programming method to find the solution of system’s optimum value,which makes the optimized result of mine dynamic design parameter more comprehensive, sysematical and reasonable. Through theory analysis research and practical validation, the obtained design parameters are reasonable and accurate.
文摘There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.
基金This project is supported by National Natural Science Foundation of China (No.60304015, No.50575142).
文摘A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.
文摘Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.
文摘An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneuvering performances, this paper proposes the parameters ωA,ωs, and SEP to measure the maneuvering performances. The linear weighted method, which is one of the basic methods of transforming several objects to a single object in mathematics programming, is used to determine the form of the correlating parameter expression. The focal point of this paper's work is to determine the weight coefficients of maneuvering performances in the expression. In order to solve this problem, the inverse problem of synthetic judgement in fuzzy mathematics is employed. The development of the equation of fuzzy relationship in this paper is based on the judgement data, which are gathered from many experts working in aeronautical field. Therefore, the expression of correlating parameter developed by this paper can be used in the design object at aircraft conceptual design stage and the judgement of synthetical measurement of the maneuverability of fighters.