Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self...Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainti...The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.展开更多
This analysis investigates the widespread use of solar drying methods and designs in developing countries,particularly for agricultural products like fruits,vegetables,and bee pollen.Traditional techniques like hot ai...This analysis investigates the widespread use of solar drying methods and designs in developing countries,particularly for agricultural products like fruits,vegetables,and bee pollen.Traditional techniques like hot air oven drying and open sun drying have drawbacks,including nutrient loss and exposure to harmful particles.Solar and thermal drying are viewed as sustainable solutions because they rely on renewable resources.The article highlights the advantages of solar drying,including waste reduction,increased productivity,and improved pricing.It is also cost-effective and energy-efficient.The review study provides an overview of different solar drying systems and technologies used in poor nations,aiming to identify the most effective and efficient designs.The focus is on comparing current models of solar dryers for optimal performance.The review underscores the importance of solar drying as a long-term,eco-friendly approach to drying food in developing countries.This review aims to evaluate how using solar-powered drying techniques can enhance food preservation,minimize waste,and enhance the quality and marketability of agricultural goods.The paper will specifically focus on examining the efficacy of these methods for drying bee pollen and pinpointing where enhancements can be made in their advancement.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inducta...Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.展开更多
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi...A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.展开更多
There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters eac...There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.展开更多
Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials....Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.展开更多
To reduce the variation of velocity characteristic of the shock absorber in acar, a modern robust optimal design method is applied to its structural parameters design. Firstly,the method is used to obtain the robust v...To reduce the variation of velocity characteristic of the shock absorber in acar, a modern robust optimal design method is applied to its structural parameters design. Firstly,the method is used to obtain the robust values which have low sensitivity to velocitycharacteristic and analyze the influences of the parameters on velocity characteristic. Secondly,the method is used to obtain their maximum tolerances under the condition of ensuring productquality. The results obviously improve the velocity characteristic.展开更多
Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The swi...Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehi...The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehicles such as China's 7000 m manned submersible Jiaolong, abyssal science has received greater attention. For decades, gravity-piston corers have been widely used to collect loose subsea-sediment long-core samples. However, the weight and length of the gravity sampler cables and the operating environment limit sampling capacity at full ocean depths. Therefore, a new self-floating sediment sampler with a spring-loaded auto-trigger release and that incorporates characteristics from traditional gravity-driven samplers is designed. This study analyzes the process by which a gravity-piston corer penetrates the sediment and the factors that affect it. A formula for obtaining the penetration depth is deduced. A method of optimizing the sampling depth is then developed based on structure design and parametric factor modeling. The parameters considered in the modeling include the sampling depth, balance weight, ultimate stress friction coefficient, dimensions of the sampler, and material properties. Thus, a new deep-sea floating parametric sampler designed based on virtual prototyping is proposed. Accurate values for all the design factors are derived from calculations based on the conservation of energy with penetration depth, analyses of the factors affecting the penetration depth, and analyses of the pressure bar stability. Finally, experimental data are used to verify the penetration-depth function and to provide theoretical guidance for the design of sediment samplers.展开更多
Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the c...Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.展开更多
Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design meth...Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design method determined the optimal parameter and tolerance simultaneously by calculating the maximum tolerance region,thereby improving the quality of products. In addition,the proposed method did not need uncertainty analysis to obtain the maximum tolerance region,so that the calculation cost could be decreased. And the method avoided the difficulty of gaining costtolerance function as maximum tolerance region represented both demand of cost and robust. Finally,an amplifier circuit case was conducted for verification purpose. Based on the results, the proposed approach could provide robust solution with optimal maximum tolerance region.展开更多
Pooling design is a mathematical tool in many application areas. In this paper, we give a new construction of pooling design with subspaces of the pseudo-symplectic space and discuss its properties. We define the desi...Pooling design is a mathematical tool in many application areas. In this paper, we give a new construction of pooling design with subspaces of the pseudo-symplectic space and discuss its properties. We define the design parameters of a d^2-disjunct matrix. Then we discuss the change law of the design parameters in our construction along with their variables.展开更多
By considering the identification problem of unknown but fixed Hamiltonian H = S0σ0 +∑i=x,y,z Siσi where σi (i = x, y, z) are pauli matrices and σ0=I, we explore the feasibility and limitation of empirically d...By considering the identification problem of unknown but fixed Hamiltonian H = S0σ0 +∑i=x,y,z Siσi where σi (i = x, y, z) are pauli matrices and σ0=I, we explore the feasibility and limitation of empirically determining the Hamiltonian parameters for quantum systems under experimental conditions imposed by projective measurements and initialization procedures. It may be unsurprising to physicists that one can not obtain the knowledge of So no matter what kind of projective measurements and initialization are permitted, but the observation draws our attention to the importance of the parameter identifiability under different experimental condition. It has also been revealed that one can obtain the knowledge of |Sz| and Sx^2+Sy^2 at most when only the projective measurement {|0/(0|, |1/(1|} is permitted to perform on and initialize the qubit. Further more, we demonstrated that it is feasible to distinguish |Sx|, |Sy|, and |Sz| even without any a priori information about Hamiltonian if at least two kinds of projective measurement or initialization procedures are permitted. It should be emphasized that both projective measurements and initialization procedures play an important role in quantum system identification.展开更多
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ...A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.展开更多
Children, who are the most weak people about sensibility and telling their desires clearly, act differently at every age phases. Because of this, child oriented designs must appeal to children about whole ages and fea...Children, who are the most weak people about sensibility and telling their desires clearly, act differently at every age phases. Because of this, child oriented designs must appeal to children about whole ages and features. Playgrounds are places where children of all ages and features spend their times commonly. But when these playgrounds were observed, that can be seen, playgrounds can not meet children's need and, because of this, they become quitted places. Within this article, child, play and playground concepts have been examined and the parameters of playground design have been classified. The aim of article is revealing the parameters for playgrounds design and offering a guide so that it can give an idea for the new- designs.展开更多
Design parameters at different scales in the pre-design phase could significantly impact both building energy consumption and photovoltaic(PV)power generation potential.However,existing studies often overlook the syne...Design parameters at different scales in the pre-design phase could significantly impact both building energy consumption and photovoltaic(PV)power generation potential.However,existing studies often overlook the synergistic effects of design parameters across multiple scales(block-building-facade scales)when evaluating these aspects.This paper aims to propose a workflow for the assessing building energy consumption and PV power generation potential of office blocks applicable in the pre-schematic design phase considering the synergistic influence of multi-scale design parameters,using building typology and parametric modelling approach.The study proposed a multi-scale design parameter classification system combined with parametric modelling.The study investigated 80 office blocks in Wuhan as the study case,which were classified into array type and enclosed type.Correlation analysis and multiple regression equations were used to quantify the single versus synergistic effects of different scale design parameters.Results suggest that focusing solely on a single scale during the pre-design stage is typically inadequate for understanding building energy potential.In contrast,multi-scale synergistic analysis boosts energy use intensity(EUI)by 7.56%and net energy use intensity(NEUI)by 33.96%.Under multi-scale synergistic conditions,the EUI of array type is more influenced by the building design parameters,while the NEUI is effected by the balance of multi-scales design parameters.While the EUI of enclosed types exhibit balanced effects across multi-scale design parameters,with NEUI results aligning closely with PV power generation potential.Multiple regression equations highlight building density and shape factor as key influencers for both array and enclosure layouts.This study offers designers a flexible and scalable workflow for evaluating building energy consumption and PV power generation potential in the pre-design phase.The findings can guide nearly-zero energy urban block planning to achieve a balance between energy supply and demand.展开更多
文摘Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
基金Supported by the National Natural Science Foundation of China(No.52071306)the Natural Science Foundation of Shandong Province(No.ZR2019MEE050)。
文摘The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.
文摘This analysis investigates the widespread use of solar drying methods and designs in developing countries,particularly for agricultural products like fruits,vegetables,and bee pollen.Traditional techniques like hot air oven drying and open sun drying have drawbacks,including nutrient loss and exposure to harmful particles.Solar and thermal drying are viewed as sustainable solutions because they rely on renewable resources.The article highlights the advantages of solar drying,including waste reduction,increased productivity,and improved pricing.It is also cost-effective and energy-efficient.The review study provides an overview of different solar drying systems and technologies used in poor nations,aiming to identify the most effective and efficient designs.The focus is on comparing current models of solar dryers for optimal performance.The review underscores the importance of solar drying as a long-term,eco-friendly approach to drying food in developing countries.This review aims to evaluate how using solar-powered drying techniques can enhance food preservation,minimize waste,and enhance the quality and marketability of agricultural goods.The paper will specifically focus on examining the efficacy of these methods for drying bee pollen and pinpointing where enhancements can be made in their advancement.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
基金supported by the National Natural Science Foundation of China(No.U1866210).
文摘Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.
文摘A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions.
文摘There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.
文摘Non-dimensional design concept for FOD tolerant fan blades is introduced based on the analyses of simplified impact models. The fan blades arc idealized as either beams or plates of elastic or rigid-plastic materials. The case of constant force impact as well as that of mass impact is analyzed. The centrifugal force effects are also considered in the beam models. The critical fracture conditions arc shown in simple npn-dimensional formulae or diagrams for each case.
基金This project is supported by Provincial Doctor Foundation of Hebei, China(No.99547013D).
文摘To reduce the variation of velocity characteristic of the shock absorber in acar, a modern robust optimal design method is applied to its structural parameters design. Firstly,the method is used to obtain the robust values which have low sensitivity to velocitycharacteristic and analyze the influences of the parameters on velocity characteristic. Secondly,the method is used to obtain their maximum tolerances under the condition of ensuring productquality. The results obviously improve the velocity characteristic.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No Y105175)the Science Investigation Foundation of Hangzhou Dianzi University, China (Grant No KYS051505010)
文摘Based on two modified Rosslor hyperchaotic systems, which are derived from the chaotic Rosslor system by introducing a state feedback controller, this paper proposes a new switched Rosslor hyperchaotic system. The switched system contains two different hyperchaotic systems and can change its behaviour continuously from one to another via a switching function. On the other hand, it presents a systematic method for designing the circuit of realizing the proposed hyperchaotic system. In this design, circuit state equations are written in normalized dimensionless form by rescaling the time variable. Furthermore, an analogous circuit is designed by using the proposed method and built for verifying the new hyperchaos and the design method. Experimental results show a good agreement between numerical simulations and experimental results.
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
基金jointly supported by the Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology (No. JCKYS2019604SXJQR-06)the National Natural Science Foundation of China-Marine Science Research Center of Shandong Provincial Government Joint Funding Project (No. U1606401)+3 种基金the National Natural Science Foundation of China (No. 61603108)the Taishan Scholar Project Funding (No. tspd20161007)the National Key Research and Development Plan (Nos. 2016YFC03007042017YFC030660)。
文摘The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehicles such as China's 7000 m manned submersible Jiaolong, abyssal science has received greater attention. For decades, gravity-piston corers have been widely used to collect loose subsea-sediment long-core samples. However, the weight and length of the gravity sampler cables and the operating environment limit sampling capacity at full ocean depths. Therefore, a new self-floating sediment sampler with a spring-loaded auto-trigger release and that incorporates characteristics from traditional gravity-driven samplers is designed. This study analyzes the process by which a gravity-piston corer penetrates the sediment and the factors that affect it. A formula for obtaining the penetration depth is deduced. A method of optimizing the sampling depth is then developed based on structure design and parametric factor modeling. The parameters considered in the modeling include the sampling depth, balance weight, ultimate stress friction coefficient, dimensions of the sampler, and material properties. Thus, a new deep-sea floating parametric sampler designed based on virtual prototyping is proposed. Accurate values for all the design factors are derived from calculations based on the conservation of energy with penetration depth, analyses of the factors affecting the penetration depth, and analyses of the pressure bar stability. Finally, experimental data are used to verify the penetration-depth function and to provide theoretical guidance for the design of sediment samplers.
基金supported by the National Natural Science Foundation of China(1127120511271355+2 种基金11101024 and 11171165)the "131" Talents Program of Tianjinthe Fundamental Research Funds for the Central Universities(65030011 and 65011361)
文摘Robust parameter design (RPD) is an important issue in experimental designs. If all experimental runs cannot be performed under homogeneous conditions, blocking the units is effective. In this paper, we obtain the correspondence relation between fractional factorial RPDs and the blocking schemes for full factorial RPDs. In addition, we provide a construction of optimal blocking schemes that make all main effects and control-by-noise two-factor interactions estimable.
基金National Natural Science Foundation of China(No.61304218)
文摘Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design method determined the optimal parameter and tolerance simultaneously by calculating the maximum tolerance region,thereby improving the quality of products. In addition,the proposed method did not need uncertainty analysis to obtain the maximum tolerance region,so that the calculation cost could be decreased. And the method avoided the difficulty of gaining costtolerance function as maximum tolerance region represented both demand of cost and robust. Finally,an amplifier circuit case was conducted for verification purpose. Based on the results, the proposed approach could provide robust solution with optimal maximum tolerance region.
基金Supported by the NSF of Hebei Province(A2009000253)
文摘Pooling design is a mathematical tool in many application areas. In this paper, we give a new construction of pooling design with subspaces of the pseudo-symplectic space and discuss its properties. We define the design parameters of a d^2-disjunct matrix. Then we discuss the change law of the design parameters in our construction along with their variables.
基金Supported by the National Nature Science Foundation of China under Grant No.60674040
文摘By considering the identification problem of unknown but fixed Hamiltonian H = S0σ0 +∑i=x,y,z Siσi where σi (i = x, y, z) are pauli matrices and σ0=I, we explore the feasibility and limitation of empirically determining the Hamiltonian parameters for quantum systems under experimental conditions imposed by projective measurements and initialization procedures. It may be unsurprising to physicists that one can not obtain the knowledge of So no matter what kind of projective measurements and initialization are permitted, but the observation draws our attention to the importance of the parameter identifiability under different experimental condition. It has also been revealed that one can obtain the knowledge of |Sz| and Sx^2+Sy^2 at most when only the projective measurement {|0/(0|, |1/(1|} is permitted to perform on and initialize the qubit. Further more, we demonstrated that it is feasible to distinguish |Sx|, |Sy|, and |Sz| even without any a priori information about Hamiltonian if at least two kinds of projective measurement or initialization procedures are permitted. It should be emphasized that both projective measurements and initialization procedures play an important role in quantum system identification.
文摘A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.
文摘Children, who are the most weak people about sensibility and telling their desires clearly, act differently at every age phases. Because of this, child oriented designs must appeal to children about whole ages and features. Playgrounds are places where children of all ages and features spend their times commonly. But when these playgrounds were observed, that can be seen, playgrounds can not meet children's need and, because of this, they become quitted places. Within this article, child, play and playground concepts have been examined and the parameters of playground design have been classified. The aim of article is revealing the parameters for playgrounds design and offering a guide so that it can give an idea for the new- designs.
基金supported by the National Natural Science Foundation(No.52378020)Open Foundation of the State Key Laboratory of Subtropical Building and Urban Science(No.2023KA02)+1 种基金Fundamental Research Funds for the Central Universities(YCJJ20230576)Program for HUST Academic Frontier Youth Team(No.2019QYTD10).
文摘Design parameters at different scales in the pre-design phase could significantly impact both building energy consumption and photovoltaic(PV)power generation potential.However,existing studies often overlook the synergistic effects of design parameters across multiple scales(block-building-facade scales)when evaluating these aspects.This paper aims to propose a workflow for the assessing building energy consumption and PV power generation potential of office blocks applicable in the pre-schematic design phase considering the synergistic influence of multi-scale design parameters,using building typology and parametric modelling approach.The study proposed a multi-scale design parameter classification system combined with parametric modelling.The study investigated 80 office blocks in Wuhan as the study case,which were classified into array type and enclosed type.Correlation analysis and multiple regression equations were used to quantify the single versus synergistic effects of different scale design parameters.Results suggest that focusing solely on a single scale during the pre-design stage is typically inadequate for understanding building energy potential.In contrast,multi-scale synergistic analysis boosts energy use intensity(EUI)by 7.56%and net energy use intensity(NEUI)by 33.96%.Under multi-scale synergistic conditions,the EUI of array type is more influenced by the building design parameters,while the NEUI is effected by the balance of multi-scales design parameters.While the EUI of enclosed types exhibit balanced effects across multi-scale design parameters,with NEUI results aligning closely with PV power generation potential.Multiple regression equations highlight building density and shape factor as key influencers for both array and enclosure layouts.This study offers designers a flexible and scalable workflow for evaluating building energy consumption and PV power generation potential in the pre-design phase.The findings can guide nearly-zero energy urban block planning to achieve a balance between energy supply and demand.