期刊文献+
共找到3,988篇文章
< 1 2 200 >
每页显示 20 50 100
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
1
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
2
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
下载PDF
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
3
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 parametric partial differential equations(PDEs) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
4
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
下载PDF
Research on Urban Building Parametric Modelling Method Based on CityEngine
5
作者 Xinyu Liu 《Journal of World Architecture》 2024年第1期7-11,共5页
With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled mo... With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes. 展开更多
关键词 CGA rules Urban planning Texture mapping parametric modeling
下载PDF
Three-Dimensional Analytical Modeling of Axial-Flux Permanent Magnet Drivers
6
作者 Wenhui Li Dazhi Wang +3 位作者 Shuo Cao Deshan Kong Sihan Wang Zhong Hua 《Computers, Materials & Continua》 SCIE EI 2023年第4期259-276,共18页
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co... In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers. 展开更多
关键词 three-dimensional analytical modeling cylindrical coordinates magnetic field distribution parameter sensitivity analysis performance measurement
下载PDF
Flow-Induced Clogging in Microfiltration Membranes: Numerical Modeling and Parametric Study
7
作者 Abdullah Rajah Al Qahtani 《Journal of Water Resource and Protection》 2023年第12期692-705,共14页
Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (... Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding. 展开更多
关键词 Microfiltration Membrane parametric Study Computational Fluid Dynamic (CFD) Discrete Element Method (DEM) CFD-DEM modeling Membrane Clogging Pore Geometry Numerical modeling Cake Layer Clogging Indicator
下载PDF
Modeling time-dependent mechanical behavior of hard rock considering excavation-induced damage and complex 3D stress states 被引量:1
8
作者 Peiyang Yu Xiuli Ding +3 位作者 Peng-Zhi Pan Shuting Miao Zhaofeng Wang Shuling Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4046-4065,共20页
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon... To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. 展开更多
关键词 Hard rock Excavation damage Complex stress state three-dimensional(3D)time-dependent model
下载PDF
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
9
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
Implementation of a particle-in-cell method for the energy solver in 3D spherical geodynamic modeling
10
作者 Hao Dong ZeBin Cao +4 位作者 LiJun Liu YanChong Li SanZhong Li LiMing Dai XinYu Li 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期549-563,共15页
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i... The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms. 展开更多
关键词 numerical oscillation overshooting and undershooting particle-in-cell method three-dimensional spherical geodynamic modeling energy solver finite element method
下载PDF
Effects of three-dimensional quality assessment nursing intervention on efficacy and disease management of patients undergoing esophageal cancer surgery
11
作者 Hai-Yan Wu Jie Jin +3 位作者 Chen Chen Jing-Jing Xu Qi Jiang Dong-Mei Lu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2979-2985,共7页
BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To ... BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients. 展开更多
关键词 Esophageal cancer three-dimensional quality structure model SELF-EFFICACY Disease management ability
下载PDF
Coordinate-Parametric Matrix Model Inspired Square-Conjoint Pattern in Cross Woven for Conventional Bamboo Mat 被引量:1
12
作者 Ye Fu Liwen Deng +2 位作者 Jinbo Hu Ti Li Shanshan Chang 《Journal of Renewable Materials》 EI 2023年第12期4025-4038,共14页
In the study,it is proposed that a coordinate-parametric matrix model is performed to a square-conjoint pattern of cross woven(SCPCW)in the bamboo mat.The patterns of SCPCW are firstly detected according to the perspe... In the study,it is proposed that a coordinate-parametric matrix model is performed to a square-conjoint pattern of cross woven(SCPCW)in the bamboo mat.The patterns of SCPCW are firstly detected according to the perspective of configuration,which is divided into the basic-monomer shape and the basic combination shape.Secondly,the compositions of design patterns in SCPCW are analyzed to attain the trend of curve shape.Based on the coordinate-parametric matrix model,the specimens of SCPCW are subsequently accomplished to elaborate the woven logic of bamboo mats.The digital innovation of SCPCW,defined by a mathematical resolution,is implemented by the software of Grasshopper(GH),which plays a crucial role in capturing image information by the Image Sampler component.Successively,the weaving logic of coordinated matrix is referred to apply in the computing component of Grasshopper software.Finally,the computer simulation could demonstrate that the coordinate-parametric matrix model of SCPCWwould be realized to analyze the micro-weaving structure and overall weaving effect in the bamboo mat. 展开更多
关键词 Cross woven configuration and composition coordinated parametrization weaving model
下载PDF
Research on Three-Dimensional Simulation of the Internal Arc Gear Skiving
13
作者 Xiaoqiang WU Rui XUE +9 位作者 Erkuo GUO Dongzhou JIA Taiyan GONG Zengrong LI Haijun YANG Xiaoxue LI Xin JIANG Shuai DING Yong LIU Shitian LI 《Mechanical Engineering Science》 2024年第1期35-40,共6页
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat... Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method. 展开更多
关键词 gear skiving undeformed three-dimensional chips solid modeling
下载PDF
Study of the geomagnetic field's regional gradients in Chinese continent using three-dimensional surface Spline model
14
作者 Yan Feng YiJun Li +3 位作者 JinYan Zhang Shuang Liu Abbas Nasir Ya Huang 《Earth and Planetary Physics》 EI CSCD 2023年第1期74-83,共10页
We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the p... We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory. 展开更多
关键词 geomagnetic field main field gradients regional model three-dimensional modeling
下载PDF
Can preoperative planning using IRIS™three-dimensional anatomical virtual models predict operative findings during robot-assisted partial nephrectomy?
15
作者 Ahmed Ghazi Nitin Sharma +6 位作者 Ahmed Radwan Hani Rashid Thomas Osinski Thomas Frye William Tabayoyong Jonathan Bloom Jean Joseph 《Asian Journal of Urology》 CSCD 2023年第4期431-439,共9页
Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative ex... Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution. 展开更多
关键词 Renal cancer PATIENT-SPECIFIC three-dimensional virtual model Imaging Partial nephrectomy Robotics
下载PDF
A Feature-Based Parametric Product Modeling System in CIMS Environment 被引量:4
16
作者 李海龙 《High Technology Letters》 EI CAS 1997年第1期13-16,共4页
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact... This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM. 展开更多
关键词 CIMS FEATURE based modeling parametric design PRODUCT model OODB
下载PDF
Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in spacewavenumber mixed domain 被引量:6
17
作者 Dai Shi-Kun Zhao Dong-Dong +3 位作者 Zhang Qian-Jiang Li Kun Chen Qing-Rui Wang Xu-Long 《Applied Geophysics》 SCIE CSCD 2018年第3期513-523,共11页
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ... In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain. 展开更多
关键词 Topography gravity ANOMALY space-wavenumber mixing DOMAIN three-dimensional NUMERICAL modeling
下载PDF
Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling 被引量:10
18
作者 Nipha Chaicharoenaudomrung Phongsakorn Kunhorm Parinya Noisa 《World Journal of Stem Cells》 SCIE 2019年第12期1065-1083,共19页
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel... Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed. 展开更多
关键词 three-dimensional CULTURES CANCER Stem cells Disease modeling In VITRO screening PLATFORM
下载PDF
Derivation of Parametric Tropical Cyclone Models for Storm Surge Modeling 被引量:2
19
作者 王志力 陆永军 耿艳芬 《China Ocean Engineering》 SCIE EI 2010年第2期245-254,共10页
In this paper, the parametric tropical cyclone models for storm surge modeling are further developed. Instead of tangential wind speed via cyclostrophic balance and radial wind speed using a simple formulation of defe... In this paper, the parametric tropical cyclone models for storm surge modeling are further developed. Instead of tangential wind speed via cyclostrophic balance and radial wind speed using a simple formulation of defection angle, the analyrical expressions of tangential and radial wind speed distribution are derived from the governing momentum equations based on the general symmetric pressure distribution of Holland and Fujita. The radius of the maximum wind is estimated by tropical cyclone wind structure which is characterized by the radial extent of special wind speed. The shape parameter in the pressure model is estimated by the data of several tropical cyclones that occurred in the East China Sea. Finally, the Fred cyclone (typhoon 199417) is calculated, and comparisons of the measured and calculated air pressures and wind speed are presented. 展开更多
关键词 tropical cyclone parametric tropical cyclone model storm surge radius of maxirmun wind shapeparameter
下载PDF
Parametric Modeling System for Cooling Turbine Blade Based on Feature Design 被引量:5
20
作者 WANG Jie ZHAO Miaodong MAO Jianxing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期758-767,共10页
Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and h... Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it. 展开更多
关键词 parametric modeling cooling turbine blade UG API
下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部