期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
1
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) pareto front
下载PDF
Satellite constellation design with genetic algorithms based on system performance
2
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) pareto optimal set satellite constellation design surveillance performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部