Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect...Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken ...Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP^+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP^+. Methods The rat model of PD was established by intranigral microinjection of MPP^+. At baseline and on day 1, 3, 7, 14, 21 following MPP^+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry. Results Intranigral injection of MPP^+ resulted in robust activa- tion of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances. Conclusion These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP^+ induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP^+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.展开更多
Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual.In addition to aiding the regulation of aerobic and anaerobic metabolism,exerc...Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual.In addition to aiding the regulation of aerobic and anaerobic metabolism,exercise can stimulate the synthesis of exerkine hormones in the circulatory system.Among several exerkines that have been investigated for their therapeutic potential,Brain-derived neurotrophic factor(BDNF)is considered the most promising candidate,especially in the management of neurodegenerative diseases.Owing to the ability of physical activity to enhance BDNF synthesis,several experimental studies conducted so far have validated this hypothesis and produced satisfactory results at the pre-clinical level.This review highlights some of the recent animal model studies that have evaluated the efficiency of exercise in enhancing BDNF synthesis and promoting neuroprotective effects.Further,this review focuses on understanding the therapeutic benefits of exercise-induced exerkine synthesis as a non-pharmacological strategy in Parkinson’s disease(PD).Regarding physical activity and exerkine induction,the neuromuscular electrical stimulation(NMES)strategy could be considered as an alternate treatment modality for patients affected with PD.展开更多
Objective To observe the influence of rotenone on the distribution of α-synuclein (ASN) in rat model of Parkinson's disease (PD). Methods Wistar rats were randomly divided into two groups and received 2 mg/kg ro...Objective To observe the influence of rotenone on the distribution of α-synuclein (ASN) in rat model of Parkinson's disease (PD). Methods Wistar rats were randomly divided into two groups and received 2 mg/kg rotenone (s.c.) or sunflower oil (as control group) for about 4 weeks. The hippocampus, substantia nigra and striatum of brain were observed. Hematoxylin and eosin stain were used to observe the Lewy body like inclusion. The expression of tyrosine hydroxylase (TH) or ASN protein was determined by anti-TH or anti-α-synuclein immunohistochemistry, respectively. Results In control rats, ASN protein distributed widely in brain, especially in hippocampus, cortex and striatum. Rotenone obviously increased TH positive neurons and fibers loss in substantia nigra and striatum (P 〈 0.05). In rotenone treated rats, ASN positive cells increased in global brain but not distributed in an even manner. In substantia nigra, ASN positive stuff was found aggregate in both cytoplasm and nucleus, and some formed spherical inclusion; in striatum, ASN positive neurites end aggregated and agglomerated around neurons; and in hippocampus, few dot-like ASN were aggregated in cell body, and no notable change was found in nucleus. Conclusion In rotenone administrated PD rats, ASN protein aggregated in several brain regions but most obviously in striatum and substantia nigra, and the distribution region of ASN was changed from peri-synapse to the cytoplasm and nucleus of dopaminergic neuron.展开更多
The present study showed that the latency of rats moving on a vertical grid was significantly prolonged, and the number of rats sliding down from the declined plane was increased remarkably, in rotenone-induced Parkin...The present study showed that the latency of rats moving on a vertical grid was significantly prolonged, and the number of rats sliding down from the declined plane was increased remarkably, in rotenone-induced Parkinson's disease model rats compared with control rats. The moving latency recovered to normal levels, but the number of slides was significantly increased at 28 days after model establishment. The slope test is a meaningful approach to evaluate the symptoms of Parkinson's disease model rats treated with rotenone. In addition, loss of substantia nigral dopaminergic neurons in model rats was observed at 1 day after the model was established, and continued gradually at 14 and 28 days. The expression of tyrosine hydroxylase-positive cells was significantly increased in gastrodin-treated rats at 14 days. Significant numbers of activated microglia cells were observed in model rats at 14 and 28 days; treatment of rats with Madopar at 28 days suppressed microglial activation. Treatment of rats with gastrodin or Madopar at 28 days significantly reduced interleukin-1β expression. The loss of substantia nigral dopaminergic neurons paralleled the microglial activation in Parkinson's disease model rats treated with rotenone. The inflammatory factors tumor necrosis factor-a and interleukin-1β are involved in the substantia nigral damage. Gastrodin could protect dopaminergic neurons via inhibition of interteukin-1β expression and neuroinflammation in the substantia nigra.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopam...The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite(dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson’s disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson’s disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons.展开更多
Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkin...Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.展开更多
Previous studies found that iron accumulates in the substantia nigra of Parkinson's disease patients However, it is still unclear whether other brain regions have iron accumulation as well. In this experiment, rats w...Previous studies found that iron accumulates in the substantia nigra of Parkinson's disease patients However, it is still unclear whether other brain regions have iron accumulation as well. In this experiment, rats with rotenone-induced Parkinson's disease were treated by gastric perfusion of baicalin or intraperitoneal injection of deferoxamine. Immunohistochemical staining demonstrated that iron accumulated not only in the substantia nigra pars compacta, but also significantly in the striatum globus pallidus, the dentate gyrus granular layer of the hippocampus, the dentate-interpositus and the facial nucleus of the cerebellum. Both baicalin and deferoxamine, which are iron chelating agents, significantly inhibited iron deposition in these brain areas, and substantially reduced the loss of tyrosine hydroxylase-positive cells. These chelators also reduced iron content in the substantia nigra. In addition to the substantia nigra, iron deposition was observed in other brain regions as well. Both baicalin and deferoxamine significantly inhibited iron accumulation in different brain regions, and had a protective effect on dopaminergic neurons.展开更多
Defects in autophagy-mediated clearance of α-synuclein may be one of the key factors leading to progressive loss of dopaminergic neurons in the substantia nigra. Moxibustion therapy for Parkinson’s disease has been ...Defects in autophagy-mediated clearance of α-synuclein may be one of the key factors leading to progressive loss of dopaminergic neurons in the substantia nigra. Moxibustion therapy for Parkinson’s disease has been shown to have a positive effect, but the underlying mechanism remains unknown. Based on this, we explored whether moxibustion could protect dopaminergic neurons by promoting autophagy mediated by mammalian target of rapamycin (mTOR), with subsequent elimination of α-syn. A Parkinson’s disease model was induced in rats by subcutaneous injection of rotenone at the back of their necks, and they received moxibustion at Zusanli (ST36), Guanyuan (CV4)and Fengfu (GV16), for 10 minutes at every point, once per day, for 14 consecutive days. Model rats without any treatment were used as a sham control. Compared with the Parkinson’s disease group, the moxibustion group showed significantly greater tyrosine hydroxylase immunoreactivity and expression of light chain 3-II protein in the substantia nigra, and their behavioral score, α-synuclein immunoreactivity,the expression of phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase (p-p70S6K) in the substantia nigra were significantly lower. These results suggest that moxibustion can promote the autophagic clearance of α-syn and improve behavioral performance in Parkinson’s disease model rats. The protective mechanism may be associated with suppression of the mTOR/p70S6K pathway.展开更多
Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplanta...Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox(VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR(0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition(5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6(Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs(ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson’s disease.展开更多
Long-term application of levodopa (L-3, 4-dihydroxyphenylalanine, L-DOPA) for Parkinson's disease can lead to adverse effects and reduce the amount of dopamine transporter (DAT) in the corpus striatum. The presen...Long-term application of levodopa (L-3, 4-dihydroxyphenylalanine, L-DOPA) for Parkinson's disease can lead to adverse effects and reduce the amount of dopamine transporter (DAT) in the corpus striatum. The present study attempted to vedfy whether increasing the amount of DAT can reduce the adverse effects of L-DOPA. The specific radioactive uptake value of DAT in the corpus striatum of the lesioned hemisphere was significantly decreased, but was significantly increased following administration of compound rehmannia formula [Radix rehmanniae preparata (prepared rehmannia root), Concha margantifera usta (nacre), Radix paeoniae alba (white peony alba), Radix salviae miltiotThizae (Danshen root), Scorpio (scorpion), green tea] for 4 weeks. The changes in DAT 1251-beta-carbomethoxy-3 beta-(4-iodophenyl) tropane autoradiography were consistent with those in radioactivity. The results revealed that the compound rehmannia formula can reduce the adverse effects of L-DOPA in treating Parkinson's disease, possibly by increasing the amount of DAT.展开更多
Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the su...Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson's disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating effect of the induced Parkinson's disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective effect on the 6-hydroxydopamine-induced Parkinson's disease through protecting dopaminergic neurons.展开更多
In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results show...In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results showed that tyrosine hydroxylase mRNA expression in the rat substantia nigra was significantly increased, while monoamine oxidase B mRNA expression was significantly decreased in the Zhichan powder group, compared with the model group. In addition, the levels of striatal dopamine and homovanillic acid, the ratio of dopamine to homovanillic acid, and the activity of blood superoxide dismutase were all higher in the Zhichan powder group than in the model group but the content of malondialdehyde in blood was lower. Our experimental findings indicate that Zhichan powder has an antioxidant effect, it can regulate the expression of monoamine oxidase B and tyrosine hydroxylase in the substantia nigra of Parkinson's disease rats, and it can facilitate the secretion of striatal dopamine and its metabolite homovanillic acid.展开更多
基金supported by the Science and Technology(S&T)Program of Hebei Province,No.22377798D(to YZ).
文摘Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
文摘Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP^+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP^+. Methods The rat model of PD was established by intranigral microinjection of MPP^+. At baseline and on day 1, 3, 7, 14, 21 following MPP^+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry. Results Intranigral injection of MPP^+ resulted in robust activa- tion of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances. Conclusion These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP^+ induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP^+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.
文摘Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual.In addition to aiding the regulation of aerobic and anaerobic metabolism,exercise can stimulate the synthesis of exerkine hormones in the circulatory system.Among several exerkines that have been investigated for their therapeutic potential,Brain-derived neurotrophic factor(BDNF)is considered the most promising candidate,especially in the management of neurodegenerative diseases.Owing to the ability of physical activity to enhance BDNF synthesis,several experimental studies conducted so far have validated this hypothesis and produced satisfactory results at the pre-clinical level.This review highlights some of the recent animal model studies that have evaluated the efficiency of exercise in enhancing BDNF synthesis and promoting neuroprotective effects.Further,this review focuses on understanding the therapeutic benefits of exercise-induced exerkine synthesis as a non-pharmacological strategy in Parkinson’s disease(PD).Regarding physical activity and exerkine induction,the neuromuscular electrical stimulation(NMES)strategy could be considered as an alternate treatment modality for patients affected with PD.
基金supported by the National Nature Science Foundation of China(No.30570627).
文摘Objective To observe the influence of rotenone on the distribution of α-synuclein (ASN) in rat model of Parkinson's disease (PD). Methods Wistar rats were randomly divided into two groups and received 2 mg/kg rotenone (s.c.) or sunflower oil (as control group) for about 4 weeks. The hippocampus, substantia nigra and striatum of brain were observed. Hematoxylin and eosin stain were used to observe the Lewy body like inclusion. The expression of tyrosine hydroxylase (TH) or ASN protein was determined by anti-TH or anti-α-synuclein immunohistochemistry, respectively. Results In control rats, ASN protein distributed widely in brain, especially in hippocampus, cortex and striatum. Rotenone obviously increased TH positive neurons and fibers loss in substantia nigra and striatum (P 〈 0.05). In rotenone treated rats, ASN positive cells increased in global brain but not distributed in an even manner. In substantia nigra, ASN positive stuff was found aggregate in both cytoplasm and nucleus, and some formed spherical inclusion; in striatum, ASN positive neurites end aggregated and agglomerated around neurons; and in hippocampus, few dot-like ASN were aggregated in cell body, and no notable change was found in nucleus. Conclusion In rotenone administrated PD rats, ASN protein aggregated in several brain regions but most obviously in striatum and substantia nigra, and the distribution region of ASN was changed from peri-synapse to the cytoplasm and nucleus of dopaminergic neuron.
基金supported by grants from the Scientific Research Common Program of Beijing Municipal Commission of Education (Protective effect of Baicalin in rats of Parkinson's disease),No. KM200610025008
文摘The present study showed that the latency of rats moving on a vertical grid was significantly prolonged, and the number of rats sliding down from the declined plane was increased remarkably, in rotenone-induced Parkinson's disease model rats compared with control rats. The moving latency recovered to normal levels, but the number of slides was significantly increased at 28 days after model establishment. The slope test is a meaningful approach to evaluate the symptoms of Parkinson's disease model rats treated with rotenone. In addition, loss of substantia nigral dopaminergic neurons in model rats was observed at 1 day after the model was established, and continued gradually at 14 and 28 days. The expression of tyrosine hydroxylase-positive cells was significantly increased in gastrodin-treated rats at 14 days. Significant numbers of activated microglia cells were observed in model rats at 14 and 28 days; treatment of rats with Madopar at 28 days suppressed microglial activation. Treatment of rats with gastrodin or Madopar at 28 days significantly reduced interleukin-1β expression. The loss of substantia nigral dopaminergic neurons paralleled the microglial activation in Parkinson's disease model rats treated with rotenone. The inflammatory factors tumor necrosis factor-a and interleukin-1β are involved in the substantia nigral damage. Gastrodin could protect dopaminergic neurons via inhibition of interteukin-1β expression and neuroinflammation in the substantia nigra.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金financially supported by the National Natural Science Foundation of China,No.30772870
文摘The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite(dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson’s disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson’s disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons.
基金supported by the National Natural Science Foundation of China,No.30973787,30973809the Open Research Fund of Zhejiang First-foremost Key Subject-Acupuncture & Moxibustion,No.ZTK2010A10+1 种基金the Natural Science Foundation of Hubei Province,No.2009CDA068the Integrated Traditional and Western Medicine project by the Health Department of Hubei Province,No.2010Z-Z01
文摘Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.
基金sponsored by the Scientific Research Common Program of Beijing Municipal Commission of Education,No.KM201110025010
文摘Previous studies found that iron accumulates in the substantia nigra of Parkinson's disease patients However, it is still unclear whether other brain regions have iron accumulation as well. In this experiment, rats with rotenone-induced Parkinson's disease were treated by gastric perfusion of baicalin or intraperitoneal injection of deferoxamine. Immunohistochemical staining demonstrated that iron accumulated not only in the substantia nigra pars compacta, but also significantly in the striatum globus pallidus, the dentate gyrus granular layer of the hippocampus, the dentate-interpositus and the facial nucleus of the cerebellum. Both baicalin and deferoxamine, which are iron chelating agents, significantly inhibited iron deposition in these brain areas, and substantially reduced the loss of tyrosine hydroxylase-positive cells. These chelators also reduced iron content in the substantia nigra. In addition to the substantia nigra, iron deposition was observed in other brain regions as well. Both baicalin and deferoxamine significantly inhibited iron accumulation in different brain regions, and had a protective effect on dopaminergic neurons.
基金supported by the National Natural Science Foundation of China,No.81403456,81473788a grant from the Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion,No.HBPCIC-2016-003
文摘Defects in autophagy-mediated clearance of α-synuclein may be one of the key factors leading to progressive loss of dopaminergic neurons in the substantia nigra. Moxibustion therapy for Parkinson’s disease has been shown to have a positive effect, but the underlying mechanism remains unknown. Based on this, we explored whether moxibustion could protect dopaminergic neurons by promoting autophagy mediated by mammalian target of rapamycin (mTOR), with subsequent elimination of α-syn. A Parkinson’s disease model was induced in rats by subcutaneous injection of rotenone at the back of their necks, and they received moxibustion at Zusanli (ST36), Guanyuan (CV4)and Fengfu (GV16), for 10 minutes at every point, once per day, for 14 consecutive days. Model rats without any treatment were used as a sham control. Compared with the Parkinson’s disease group, the moxibustion group showed significantly greater tyrosine hydroxylase immunoreactivity and expression of light chain 3-II protein in the substantia nigra, and their behavioral score, α-synuclein immunoreactivity,the expression of phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase (p-p70S6K) in the substantia nigra were significantly lower. These results suggest that moxibustion can promote the autophagic clearance of α-syn and improve behavioral performance in Parkinson’s disease model rats. The protective mechanism may be associated with suppression of the mTOR/p70S6K pathway.
基金supported by the National Natural Science Foundation of China,No. 81771381 (to CQL)Anhui Provincial Key Research and Development Project,Nos. 2022e07020030 (to CQL), 2022e07020032 (to YG)+2 种基金Science Research Project of Bengbu Medical College,No. 2021byfy002 (to CQL)the Natural Science Foundation of the Higher Education Institutions of Anhui Province,No. KJ2021ZD0085 (to CJW)the Undergraduate Innovative Training Program of China,Nos. 202110367043 (to CQL), 202110367044 (to YG)。
文摘Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox(VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR(0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition(5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6(Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs(ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson’s disease.
基金the National Natural Science Foundation of China,No.30672684, 30973722the Third Intention Key Disciplinary Areas of Shanghai,No.S30302
文摘Long-term application of levodopa (L-3, 4-dihydroxyphenylalanine, L-DOPA) for Parkinson's disease can lead to adverse effects and reduce the amount of dopamine transporter (DAT) in the corpus striatum. The present study attempted to vedfy whether increasing the amount of DAT can reduce the adverse effects of L-DOPA. The specific radioactive uptake value of DAT in the corpus striatum of the lesioned hemisphere was significantly decreased, but was significantly increased following administration of compound rehmannia formula [Radix rehmanniae preparata (prepared rehmannia root), Concha margantifera usta (nacre), Radix paeoniae alba (white peony alba), Radix salviae miltiotThizae (Danshen root), Scorpio (scorpion), green tea] for 4 weeks. The changes in DAT 1251-beta-carbomethoxy-3 beta-(4-iodophenyl) tropane autoradiography were consistent with those in radioactivity. The results revealed that the compound rehmannia formula can reduce the adverse effects of L-DOPA in treating Parkinson's disease, possibly by increasing the amount of DAT.
基金supported by the National Natural Science Foundation of ChinaNo.81171208+1 种基金the Natural Science Foundation of Shandong Province of ChinaNo.Z2008C06
文摘Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson's disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating effect of the induced Parkinson's disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective effect on the 6-hydroxydopamine-induced Parkinson's disease through protecting dopaminergic neurons.
文摘In this study, rat models of Parkinson's disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results showed that tyrosine hydroxylase mRNA expression in the rat substantia nigra was significantly increased, while monoamine oxidase B mRNA expression was significantly decreased in the Zhichan powder group, compared with the model group. In addition, the levels of striatal dopamine and homovanillic acid, the ratio of dopamine to homovanillic acid, and the activity of blood superoxide dismutase were all higher in the Zhichan powder group than in the model group but the content of malondialdehyde in blood was lower. Our experimental findings indicate that Zhichan powder has an antioxidant effect, it can regulate the expression of monoamine oxidase B and tyrosine hydroxylase in the substantia nigra of Parkinson's disease rats, and it can facilitate the secretion of striatal dopamine and its metabolite homovanillic acid.