期刊文献+
共找到20,207篇文章
< 1 2 250 >
每页显示 20 50 100
The pathogenesis of Parkinson’s disease and crosstalk with other diseases
1
作者 TINGTING LIU DINGYOU GUO JIANSHE WEI 《BIOCELL》 SCIE 2024年第8期1155-1179,共25页
In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,p... In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,postural instability,and gait instability are the predominant clinical symptoms.The two main types of PD are sporadic and familial,with sporadic PD being the more prevalent of the two.The environment,genetics,mitochondrial dysfunction,oxidative stress,inflammation,protein aggregation and misfolding,loss of trophic factors,cell death,and gut microbiota may all have a role in the etiology of PD.PD is inversely connected with other cancers and positively correlated with COVID-19,diabetes mellitus(DM),melanoma,and ischemic heart disease(IHD)risk.Delaying disease progression,managing motor and non-motor symptoms,and avoiding and controlling dysfunction in the middle and later phases of the disease are the key areas of research and development for its therapy.Presently,the development and progression of PD can be slowed down by using conventional pharmacology,natural items,and innovative technology.This article reviews the pathogenesis of PD,its correlations with other non-genetic diseases,and the research progress of drugs and technologies for alleviating PD. 展开更多
关键词 parkinsons disease Mitochondrial dysfunction Oxidative stress Inflammation Cancer THERAPIEs
下载PDF
Effects of mesenchymal stem cell on dopaminergic neurons,motor and memory functions in animal models of Parkinson's disease:a systematic review and meta-analysis 被引量:4
2
作者 Jong Mi Park Masoud Rahmati +2 位作者 Sang Chul Lee Jae Il Shin Yong Wook Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1584-1592,共9页
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ... Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols. 展开更多
关键词 ANIMAL animal experimentation mesenchymal stem cells models parkinsons disease stem cell transplantation
下载PDF
Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease 被引量:3
3
作者 Yingying Gu Jiaying Zhang +4 位作者 Xinru Zhao Wenyuan Nie Xiaole Xu Mingxuan Liu Xiaoling Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期583-590,共8页
Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients wit... Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction. 展开更多
关键词 BIOMARKER EARLY-sTAGE olfactory disorders olfactory dysfunction parkinsons disease
下载PDF
The role of exosomes in adult neurogenesis:implications for neurodegenerative diseases 被引量:2
4
作者 Zhuoyang Yu Yan Teng +1 位作者 Jing Yang Lu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期282-288,共7页
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso... Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system. 展开更多
关键词 adult neurogenesis Alzheimer’s disease amyotrophic lateral sclerosis EXOsOME Huntington’s disease neurodegenerative disease neurogenic niches parkinsons disease
下载PDF
Cell reprogramming therapy for Parkinson’s disease 被引量:5
5
作者 Wenjing Dong Shuyi Liu +1 位作者 Shangang Li Zhengbo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2444-2455,共12页
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ... Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease. 展开更多
关键词 animal models AsTROCYTEs AUTOLOGOUs cell reprogramming cell therapy direct lineage reprogramming dopaminergic neurons induced pluripotent stem cells non-human primates parkinsons disease
下载PDF
Gut microbiota dysbiosis contributes toα-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson’s disease 被引量:4
6
作者 Xiaoli Fang Sha Liu +9 位作者 Bilal Muhammad Mingxuan Zheng Xing Ge Yan Xu Shu Kan Yang Zhang Yinghua Yu Kuiyang Zheng Deqin Geng Chun-Feng Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2081-2088,共8页
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi... Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease. 展开更多
关键词 C/EBP/AEP signaling pathway ENDOTOXEMIA fecal microbiota transplantation intestinal barrier intestinal inflammation microbiota-gut-brain axis parkinsons disease
下载PDF
A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease 被引量:2
7
作者 Xi Chen Yuhu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期324-330,共7页
The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent bu... The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease. 展开更多
关键词 anterior brain system CEREBELLUM CHOLINERGIC cognitive impairment DOPAMINERGIC dual syndrome hypothesis neuroimage NEUROTRANsMITTER parkinsons disease posterior brain system therapeutic targets
下载PDF
A novel mechanism of PHB2-mediated mitophagy participating in the development of Parkinson's disease 被引量:3
8
作者 Yongjiang Zhang Shiyi Yin +4 位作者 Run Song Xiaoyi Lai Mengmeng Shen Jiannan Wu Junqiang Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1828-1834,共7页
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m... Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin. 展开更多
关键词 endoplasmic reticulum dopaminergic neuron microtubule-associated protein 1 light chain 3 MITOPHAGY oxidative stress PARKIN parkinsons disease PKR-like endoplasmic reticulum kinase reactive oxygen species prohibitin-2
下载PDF
Antisense therapy:a potential breakthrough in the treatment of neurodegenerative diseases 被引量:1
9
作者 Roberta Romano Cecilia Bucci 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1027-1035,共9页
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th... Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration. 展开更多
关键词 Alzheimer’s disease amyotrophic lateral sclerosis antisense oligonucleotide Huntington’s disease neurodegenerative disorders parkinsons disease sIRNA
下载PDF
Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders:current knowledge and future directions 被引量:1
10
作者 Yumei Yue Xiaodan Zhang +2 位作者 Wen Lv Hsin-Yi Lai Ting Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1973-1980,共8页
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli... Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy. 展开更多
关键词 atypical parkinsonism glymphatic system magnetic resonance imaging neurotoxic proteins parkinsons disease
下载PDF
NADPH oxidase 4(NOX4)as a biomarker and therapeutic target in neurodegenerative diseases 被引量:1
11
作者 Napissara Boonpraman Sun Shin Yi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1961-1966,共6页
Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD... Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions. 展开更多
关键词 Alzheimer’s disease AsTROCYTEs mitochondrial dysfunction MYELOPEROXIDAsE NADPH oxidase 4 NADPH oxidase 4 inhibitors neurodegenerative diseases OsTEOPONTIN parkinsons disease reactive oxygen species
下载PDF
Roles of neuronal lysosomes in the etiology of Parkinson’s disease 被引量:1
12
作者 Mattia Volta 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1981-1983,共3页
Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fun... Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease.In this respect,the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics,genomics,and pathologic indications,spanning both familial and idiopathic Parkinson’s disease.Most,if not all,genes linked to familial disease are involved,in a regulatory capacity,in lysosome function(e.g.,LRRK2,alpha-synuclein,VPS35,Parkin,and PINK1).Moreover,the majority of genomic loci associated with increased risk of idiopathic Parkinson’s cluster in lysosome biology and regulation(GBA as the prime example).Lastly,neuropathologic evidence showed alterations in lysosome markers in autoptic material that,coupled to the alpha-synuclein proteinopathy that defines the disease,strongly indicate an alteration in functionality.In this Brief Review article,I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson’s pathogenesis,aiming at a larger vision on the events underlying the onset of the disease.The attempts at targeting autophagy for therapeutic purposes in Parkinson’s have been mostly aimed at“indiscriminately”enhancing its activity to promote the degradation and elimination of aggregate protein accumulations,such as alpha-synuclein Lewy bodies.However,this approach is based on the assumption that protein pathology is the root cause of disease,while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings.In addition,it has been reported that unspecific boosting of autophagy can be detrimental.Thus,it is important to understand the mechanisms of specific autophagy forms and,even more,the adjustment of specific lysosome functionalities.Indeed,lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions.Here,I discuss hypotheses on these possible mechanisms,their links with etiologic and risk factors for Parkinson’s disease,and how they could be targeted for disease-modifying purposes. 展开更多
关键词 ALPHA-sYNUCLEIN autophagy LRRK2 LYsOsOME neuroprotection NEUROTRANsMIssION parkinsons disease Rit2 sYNAPsE
下载PDF
Diagnostic delay in inflammatory bowel diseases in a German population 被引量:4
13
作者 Elisabeth Blüthner Annalena Dehe +11 位作者 Carsten Büning Britta Siegmund Matthias Prager Jochen Maul Alexander Krannich Jan Preiß Bertram Wiedenmann Florian Rieder Raneem Khedraki Frank Tacke Andreas Sturm Anja Schirbel 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3465-3478,共14页
BACKGROUND Early diagnosis is key to prevent bowel damage in inflammatory bowel disease(IBD).Risk factor analyses linked with delayed diagnosis in European IBD patients are scarce and no data in German IBD patients ex... BACKGROUND Early diagnosis is key to prevent bowel damage in inflammatory bowel disease(IBD).Risk factor analyses linked with delayed diagnosis in European IBD patients are scarce and no data in German IBD patients exists.AIM To identify risk factors leading to prolonged diagnostic time in a German IBD cohort.METHODS Between 2012 and 2022,430 IBD patients from four Berlin hospitals were enrolled in a prospective study and asked to complete a 16-item questionnaire to determine features of the path leading to IBD diagnosis.Total diagnostic time was defined as the time from symptom onset to consulting a physician(patient waiting time)and from first consultation to IBD diagnosis(physician diagnostic time).Univariate and multivariate analyses were performed to identify risk factors for each time period.RESULTS The total diagnostic time was significantly longer in Crohn’s disease(CD)compared to ulcerative colitis(UC)patients(12.0 vs 4.0 mo;P<0.001),mainly due to increased physician diagnostic time(5.5 vs 1.0 mo;P<0.001).In a multivariate analysis,the predominant symptoms diarrhea(P=0.012)and skin lesions(P=0.028)as well as performed gastroscopy(P=0.042)were associated with longer physician diagnostic time in CD patients.In UC,fever was correlated(P=0.020)with shorter physician diagnostic time,while fatigue(P=0.011)and positive family history(P=0.046)were correlated with longer physician diagnostic time.CONCLUSION We demonstrated that CD patients compared to UC are at risk of long diagnostic delay.Future efforts should focus on shortening the diagnostic delay for a better outcome in these patients. 展开更多
关键词 Diagnostic time Diagnostic delay Crohn’s disease Ulcerative colitis GERMANY
下载PDF
Deep brain implantable microelectrode arrays for detection and functional localization of the subthalamic nucleus in rats with Parkinson’s disease 被引量:1
14
作者 Luyi Jing Zhaojie Xu +11 位作者 Penghui Fan Botao Lu Fan Mo Ruilin Hu Wei Xu Jin Shan Qianli Jia Yuxin Zhu Yiming Duan Mixia Wang Yirong Wu Xinxia Cai 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期439-452,共14页
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr... The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei. 展开更多
关键词 Functional localization Implantable microelectrode arrays parkinsons disease subthalamic nucleus
下载PDF
Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases 被引量:1
15
作者 Sonia Irais Gonzalez-Cano Gonzalo Flores +3 位作者 Jorge Guevara Julio Cesar Morales-Medina Samuel Treviño Alfonso Diaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期571-577,共7页
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,... Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,including cardiovascular diseases,osteoporosis,cancer,diabetes,and neurodegeneration.Aging is considered the major risk factor for Parkinson’s and Alzheimer’s disease develops.Likewise,diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders.Currently,no treatment can effectively reverse these neurodegenerative pathologies.However,some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes.In the previous framework,Vanadium species have demonstrated a notable antidiabetic effect.Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome.The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms.This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain,constituting a therapeutic alternative for aging and neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease ANTIDIABETIC brain cognition diabetes insulin NEURODEGENERATION NEUROINFLAMMATION oxidative stress Vanadium species
下载PDF
Soluble p75 neurotrophic receptor as a reliable biomarker in neurodegenerative diseases: what is the evidence? 被引量:1
16
作者 Georges Jourdi Samuel Fleury +1 位作者 Imane Boukhatem Marie Lordkipanidzé 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期536-541,共6页
Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve deve... Neurodegenerative diseases are often misdiagnosed,especially when the diagnosis is based solely on clinical symptoms.The p75 neurotrophic receptor(p75^(NTR))has been studied as an index of sensory and motor nerve development and maturation.Its cleavable extracellular domain(ECD)is readily detectable in various biological fluids including plasma,serum and urine.There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer’s disease,amyotrophic lateral sclerosis,age-related dementia,schizophrenia,and diabetic neuropathy.Whether p75^(NTR) ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders,and whether it could potentially lead to the development of targeted therapies,remains an open question.In this review,we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases.We also highlight areas that require further investigation to better understand the role of p75^(NTR) ECD in the clinical diagnosis and management of neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease amyotrophic lateral sclerosis BIOMARKER DEMENTIA diabetic neuropathy nerve growth factor receptor(NGFR) NEURODEGENERATION p75^(NTR) schizophrenia
下载PDF
Cath-KP,a novel peptide derived from frog skin,prevents oxidative stress damage in a Parkinson’s disease model
17
作者 Huanpeng Lu Jinwei Chai +9 位作者 Zijian Xu Jiena Wu Songzhe He Hang Liao Peng Huang Xiaowen Huang Xi Chen Haishan Jiang Shaogang Qu Xueqing Xu 《Zoological Research》 SCIE CSCD 2024年第1期108-124,共17页
Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In... Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD. 展开更多
关键词 Cath-KP PEPTIDE parkinsons disease Oxidative stress Neuroprotection
下载PDF
Comparative proteomic analysis of plasma exosomes reveals the functional contribution of N-acetyl-alpha-glucosaminidase to Parkinson’s disease
18
作者 Yuan Zhao Yidan Zhang +6 位作者 Xin Liu Jian Zhang Ya Gao Shuyue Li Cui Chang Xiang Liu Guofeng Yang 《Neural Regeneration Research》 SCIE CAS 2025年第10期2998-3012,共15页
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect... Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease. 展开更多
关键词 biomarker diagnosis EXOsOMEs N-acetyl-alpha-glucosaminidase parkinsons disease proteomic α-synuclein
下载PDF
The autophagy protein Atg9 functions in glia and contributes to parkinsonian symptoms in a Drosophila model of Parkinson’s disease
19
作者 Shuanglong Yi Linfang Wang +1 位作者 Margaret S.Ho Shiping Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1150-1155,共6页
Parkinson’s disease is a progressive neurodegenerative disease characterized by motor deficits,dopaminergic neuron loss,and brain accumulation ofα-synuclein aggregates called Lewy bodies.Dysfunction in protein degra... Parkinson’s disease is a progressive neurodegenerative disease characterized by motor deficits,dopaminergic neuron loss,and brain accumulation ofα-synuclein aggregates called Lewy bodies.Dysfunction in protein degradation pathways,such as autophagy,has been demonstrated in neurons as a critical mechanism for eliminating protein aggregates in Parkinson’s disease.However,it is less well understood how protein aggregates are eliminated in glia,the other cell type in the brain.In the present study,we show that autophagy-related gene 9(Atg9),the only transmembrane protein in the autophagy machinery,is highly expressed in Drosophila glia from adult brain.Results from immunostaining and live cell imaging analysis reveal that a portion of Atg9 localizes to the trans-Golgi network,autophagosomes,and lysosomes in glia.Atg9 is persistently in contact with these organelles.Lacking glial atg9 reduces the number of omegasomes and autophagosomes,and impairs autophagic substrate degradation.This suggests that glial Atg9 participates in the early steps of autophagy,and hence the control of autophagic degradation.Importantly,loss of glial atg9 induces parkinsonian symptoms in Drosophila including progressive loss of dopaminergic neurons,locomotion deficits,and glial activation.Our findings identify a functional role of Atg9 in glial autophagy and establish a potential link between glial autophagy and Parkinson’s disease.These results may provide new insights on the underlying mechanism of Parkinson’s disease. 展开更多
关键词 Atg9 AUTOPHAGY GLIA parkinsons disease
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
20
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival parkinsons disease UNC5C
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部