With increasing amount of unconventional natural gas,the production of ethane,propane and other low alkanes continues to increase.In our previous works,a partially decoupled process(PDP) was proposed for conversion of...With increasing amount of unconventional natural gas,the production of ethane,propane and other low alkanes continues to increase.In our previous works,a partially decoupled process(PDP) was proposed for conversion of ethane based on numerical simulations,which showed higher acetylene and ethylene selectivities than the original partial oxidation process.In the current work,the PDP of ethane for producing acetylene and ethylene was studied experimentally to verify the PDP concept.In the PDP of ethane,coke-oven gas or other cheap gas combusts with stoichiometric oxygen as heat carrier,and ethane is mixed with the heat carrier and undergoes pyrolysis at high temperatures.The jet-in-cross-flow(JICF) reactor was designed and manufactured to realize the PDP.A positioning device of 0.1 mm accuracy and a mass spectrometer were used to measure the spatial profiles of the species concentrations.The maximum combined yield(52.7%) of acetylene and ethylene was obtained even at the condition of heat loss,confirming that the PDP of ethane was advantageous over the partial oxidation process and at least comparable to the steam cracking process.展开更多
In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed...In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed for scale-up.In this work,the influence of changing the composition and temperature of the heat carrier was investigated by simulations with detailed chemistry to further increase of the C_(2)(C_(2)H_(2)+C_(2)H_(4))yield in the PDP of ethane.At ideal mixing conditions,the C_(2) yield is 75.3%without steam addition and it is 82.9%at steam addition ratio of β=1.4.In comparison,the C_(2) yield in an FIB reactor is 62.4%without steam addition and it increases to 78.5%with steam addition(β=1.4).The requirement of high mixing efficiency is diminished by steam addition,which is favorable for reactor scale-up.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
In this paper, we propose a multistage Volterra filter and show it is equivalent to the partially decoupled Volterra per as formulated in [1]. Using this approach. we may readily derive a partially decoupled parallel ...In this paper, we propose a multistage Volterra filter and show it is equivalent to the partially decoupled Volterra per as formulated in [1]. Using this approach. we may readily derive a partially decoupled parallel algorithm for adaptation of filter's coefficients and upper bounds for each of the step sizes. The approach greatly simplifies the derivation given in [1].展开更多
Aimed at the problems of design difficulty and weak kinematic performance caused by spherical joint,a novel PRC+PRCR+RR humanoid ankle joint based on the partially decoupled spherical parallel mechanism is proposed.Ac...Aimed at the problems of design difficulty and weak kinematic performance caused by spherical joint,a novel PRC+PRCR+RR humanoid ankle joint based on the partially decoupled spherical parallel mechanism is proposed.According to screw theory,the degree of freedom and decoupling characteristics of this mechanism are analyzed.Based on Klein formula and virtual work principle,the kinematic expressions of each link and dynamic model are established.The correctness of the dynamic model is verified by combining the virtual prototype software and the ankle pose function obtained by gait planning and Fourier fitting.The workspace of this mechanism is mapped into a two-dimensional polar coordinate system with the azimuth and elevation angles of the spherical coordinate system as parameters.The motion/force transmission index and constraint index of this mechanism are evaluated and expressed in the workspace,showing this mechanism with excellent kinematic characteristics.展开更多
文摘With increasing amount of unconventional natural gas,the production of ethane,propane and other low alkanes continues to increase.In our previous works,a partially decoupled process(PDP) was proposed for conversion of ethane based on numerical simulations,which showed higher acetylene and ethylene selectivities than the original partial oxidation process.In the current work,the PDP of ethane for producing acetylene and ethylene was studied experimentally to verify the PDP concept.In the PDP of ethane,coke-oven gas or other cheap gas combusts with stoichiometric oxygen as heat carrier,and ethane is mixed with the heat carrier and undergoes pyrolysis at high temperatures.The jet-in-cross-flow(JICF) reactor was designed and manufactured to realize the PDP.A positioning device of 0.1 mm accuracy and a mass spectrometer were used to measure the spatial profiles of the species concentrations.The maximum combined yield(52.7%) of acetylene and ethylene was obtained even at the condition of heat loss,confirming that the PDP of ethane was advantageous over the partial oxidation process and at least comparable to the steam cracking process.
基金supported by the National Natural Science Foundation of China(21276135)by Project of Chinese Ministry of Education(113004A).
文摘In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed for scale-up.In this work,the influence of changing the composition and temperature of the heat carrier was investigated by simulations with detailed chemistry to further increase of the C_(2)(C_(2)H_(2)+C_(2)H_(4))yield in the PDP of ethane.At ideal mixing conditions,the C_(2) yield is 75.3%without steam addition and it is 82.9%at steam addition ratio of β=1.4.In comparison,the C_(2) yield in an FIB reactor is 62.4%without steam addition and it increases to 78.5%with steam addition(β=1.4).The requirement of high mixing efficiency is diminished by steam addition,which is favorable for reactor scale-up.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
文摘In this paper, we propose a multistage Volterra filter and show it is equivalent to the partially decoupled Volterra per as formulated in [1]. Using this approach. we may readily derive a partially decoupled parallel algorithm for adaptation of filter's coefficients and upper bounds for each of the step sizes. The approach greatly simplifies the derivation given in [1].
基金the Zhejiang Province Foundation for Distinguished Young Scholars of China(No.LR18E050003)the National Natural Science Foundation of China(Nos.51975523 and 51475424)。
文摘Aimed at the problems of design difficulty and weak kinematic performance caused by spherical joint,a novel PRC+PRCR+RR humanoid ankle joint based on the partially decoupled spherical parallel mechanism is proposed.According to screw theory,the degree of freedom and decoupling characteristics of this mechanism are analyzed.Based on Klein formula and virtual work principle,the kinematic expressions of each link and dynamic model are established.The correctness of the dynamic model is verified by combining the virtual prototype software and the ankle pose function obtained by gait planning and Fourier fitting.The workspace of this mechanism is mapped into a two-dimensional polar coordinate system with the azimuth and elevation angles of the spherical coordinate system as parameters.The motion/force transmission index and constraint index of this mechanism are evaluated and expressed in the workspace,showing this mechanism with excellent kinematic characteristics.