Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear beh...Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear behaviors in a punch shear test,simulations using Particle Flow Code were carried out.The effects of three geometric dimensions(i.e.,disk diameter,ratio of shear surface diameter to disk diameter,and ratio of disk height to shear surface diameter)were discussed.Variations of shear strength,shear stiffness,and shear dilatancy angles were studied,and the fracture processes and patterns of samples were investigated.Then,normal stress on the shear surface during test was analyzed and a suggested disk geometric dimension was given.Simulation results show that when the ratio of the shear surface diameter to the disk diameter and the ratio of disk height to the shear surface diameter is small enough,the shear strength,shear stiffness,and shear dilatancy angles are extremely sensitive to the three geometric parameters.If the ratio of surface diameter to disk diameter is too large or the ratio of disk height to surface diameter is too small,a part of the sample within the shear surface will fail due to macro tensile cracks,which is characterized by break off.Samples with a greater ratio of disk height to shear surface diameter,namely when the sample is relatively thick,crack from one end to the other while others crack from both ends towards the middle.During test,the actual normal stress on the shear surface is greater than the target value because of the extra compressive stress from the part of sample outside shear surface.展开更多
A two-dimensionM discrete element code, particle flow code (PFC2D), is employed to investigate foundations reinforced with horizontal-vertical (H-V) inclusions. The initial states and loading processes of both unr...A two-dimensionM discrete element code, particle flow code (PFC2D), is employed to investigate foundations reinforced with horizontal-vertical (H-V) inclusions. The initial states and loading processes of both unreinforced and H-V reinforced foundations are simulated by PFC2D method. The interface between particles and reinforcements, and the reinforcement mechanism of the H-V reinforced foundations are studied through stress distribution graphs, displacement vector graphs and contact force graphs. The simulation results demonstrate that the vertical elements of the H-V reinforcement keep the particles from being displaced under the applied load. The H-V reinforcement can distribute the load uniformly over a wider area, thereby improving the bearing capacity of soil foundation.展开更多
The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and tw...The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.展开更多
利用离散单元法中的二维颗粒流方法(particle flow code in 2-dimension,PFC2D),通过对双轴数值试样施加循环等幅应变且控制加荷过程中试样体积(面积)不变的方法,模拟了循环加荷条件下饱和砂土的液化特性。在得到试样液化宏观力学响应...利用离散单元法中的二维颗粒流方法(particle flow code in 2-dimension,PFC2D),通过对双轴数值试样施加循环等幅应变且控制加荷过程中试样体积(面积)不变的方法,模拟了循环加荷条件下饱和砂土的液化特性。在得到试样液化宏观力学响应的同时,分析了液化过程中内部平均接触数的变化规律。进一步研究了应变幅值、围压对数值试样液化特性的影响,并与室内试验规律进行了对比。结果表明,数值模拟能够定性地反映饱和砂土振动液化的一般规律,数值模拟得到的应变幅值、围压对试样抗液化强度的影响规律符合实际砂土室内试验规律。展开更多
提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions...提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,CHD(Nos.300102210307,300102210308)the National Natural Science Foundation of China(Nos.51708040,41831286,51678063,51978065).
文摘Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear behaviors in a punch shear test,simulations using Particle Flow Code were carried out.The effects of three geometric dimensions(i.e.,disk diameter,ratio of shear surface diameter to disk diameter,and ratio of disk height to shear surface diameter)were discussed.Variations of shear strength,shear stiffness,and shear dilatancy angles were studied,and the fracture processes and patterns of samples were investigated.Then,normal stress on the shear surface during test was analyzed and a suggested disk geometric dimension was given.Simulation results show that when the ratio of the shear surface diameter to the disk diameter and the ratio of disk height to the shear surface diameter is small enough,the shear strength,shear stiffness,and shear dilatancy angles are extremely sensitive to the three geometric parameters.If the ratio of surface diameter to disk diameter is too large or the ratio of disk height to surface diameter is too small,a part of the sample within the shear surface will fail due to macro tensile cracks,which is characterized by break off.Samples with a greater ratio of disk height to shear surface diameter,namely when the sample is relatively thick,crack from one end to the other while others crack from both ends towards the middle.During test,the actual normal stress on the shear surface is greater than the target value because of the extra compressive stress from the part of sample outside shear surface.
基金the National Natural Science Foundation of China (Nos. 41202215 and 40972192)the Innovation Program of Shanghai Municipal Education Commission (No. 11ZZ88)the Innovation Foundation of Shanghai University
文摘A two-dimensionM discrete element code, particle flow code (PFC2D), is employed to investigate foundations reinforced with horizontal-vertical (H-V) inclusions. The initial states and loading processes of both unreinforced and H-V reinforced foundations are simulated by PFC2D method. The interface between particles and reinforcements, and the reinforcement mechanism of the H-V reinforced foundations are studied through stress distribution graphs, displacement vector graphs and contact force graphs. The simulation results demonstrate that the vertical elements of the H-V reinforcement keep the particles from being displaced under the applied load. The H-V reinforcement can distribute the load uniformly over a wider area, thereby improving the bearing capacity of soil foundation.
基金Project(41807241) supported by the National Natural Science Foundation of ChinaProject(2021M693544) supported by China Postdoctoral Science FoundationProject(2022JM-160) supported by the Natural Science Basic Research Program of Shaanxi,China。
文摘The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.
文摘利用离散单元法中的二维颗粒流方法(particle flow code in 2-dimension,PFC2D),通过对双轴数值试样施加循环等幅应变且控制加荷过程中试样体积(面积)不变的方法,模拟了循环加荷条件下饱和砂土的液化特性。在得到试样液化宏观力学响应的同时,分析了液化过程中内部平均接触数的变化规律。进一步研究了应变幅值、围压对数值试样液化特性的影响,并与室内试验规律进行了对比。结果表明,数值模拟能够定性地反映饱和砂土振动液化的一般规律,数值模拟得到的应变幅值、围压对试样抗液化强度的影响规律符合实际砂土室内试验规律。
文摘提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.