期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
1
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET TRANSFORM particle swarm optimization(PSO) back propagation(BP)neural network
下载PDF
High-order generalized screen propagator migration based on particle swarm optimization 被引量:2
2
作者 何润 尤加春 +3 位作者 刘斌 王彦春 邓世广 张丰麒 《Applied Geophysics》 SCIE CSCD 2017年第1期64-72,189,190,共11页
Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unres... Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unresolved. To describe the seismic wave propagation in media with lateral velocity variations and to image high-angle structures, we propose the generalized screen propagator based on particle swarm optimization (PSO-GSP), for the precise fitting of the single-square-root operator. We use the 2D SEG/EAGE salt model to test the proposed PSO-GSP migration method to image the faults beneath the salt dome and compare the results to those of the conventional high-order generalized screen propagator (GSP) migration and split-step Fourier (SSF) migration. Moreover, we use 2D marine data from the South China Sea to show that the PSO-GSP migration can better image strong reflectors than conventional imaging methods. 展开更多
关键词 particle swarm optimization generalized screen propagator Taylor series seismic migration one-way wave operator
下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
3
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 Support vector machine back propagation neural network particle swarm optimization blade icing assessment
下载PDF
Multi-Source Underwater DOA Estimation Using PSO-BP Neural Network Based on High-Order Cumulant Optimization
4
作者 Haihua Chen Jingyao Zhang +3 位作者 Bin Jiang Xuerong Cui Rongrong Zhou Yucheng Zhang 《China Communications》 SCIE CSCD 2023年第12期212-229,共18页
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma... Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm. 展开更多
关键词 gaussian colored noise higher-order cumulant multiple sources particle swarm optimization(PSO)algorithm pso-bp neural network
下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
5
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
下载PDF
基于PIWT-IPSO-BP的污水厂出水COD含量的预测模型
6
作者 张净 窦慧芸 +1 位作者 蒋武 刘晓梅 《中国农村水利水电》 北大核心 2024年第9期15-20,28,共7页
在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物... 在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物的产量和质量,进而对农作物生产的可持续性构成挑战。因此,有必要精确预测污水处理厂出水COD浓度的变化趋势,从而促进其在农业灌溉中的有效应用。研究结合了改进的小波变换、改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法和反向传播BP(Back Propagation,BP)神经网络作为预测模型。鉴于COD受到众多因素的影响,这些因素之间存在复杂的耦合关系,采用PCA进行特征提取。考虑到数据采集的过程中不可避免的噪声干扰,应用小波降噪对原始数据进行处理,以确保数据质量,提高模型准确性。在此基础上,基于BP神经网络算法构建污水处理厂出水COD的预测模型。为了解决BP神经网络参数选择可能遇到的盲目性问题,引入改进的粒子群算法对模型进行参数优化,以提高预测精度。实验结果表明,提出的PIWT-IPSO-BP模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.222、0.386和0.984。该模型在一定程度上改善了数据噪声、多因子制约等问题,为污水循环利用技术应用于农业灌溉方面提供了参考依据。 展开更多
关键词 化学需氧量 预测模型 小波变换 粒子群优化算法 BP神经网络
下载PDF
基于不同算法优化的back propagation神经网络在三元乙丙橡胶混炼胶门尼黏度预测中的应用 被引量:1
7
作者 李高伟 李佳 +3 位作者 朱金梅 鉴冉冉 苗清 曾宪奎 《合成橡胶工业》 CAS 北大核心 2023年第6期488-494,共7页
分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持... 分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持较高的拟合度和相关性;相比单一的BP神经网络,GA优化后BP神经网络模型的精度提高了58.9%,PSO优化后BP神经网络模型的精度提高了3.57%,说明两种算法优化后的预测模型,特别是GA优化的BP神经网络预测模型对EPDM混炼胶门尼黏度的预测精度改善明显。 展开更多
关键词 back propagation神经网络 遗传算法 粒子群算法 三元乙丙橡胶 混炼胶 门尼黏度 预测模型
下载PDF
基于 SPA-PSO-BP 的花生高光谱图像分类方法研究 被引量:1
8
作者 杨洋 徐熙平 +3 位作者 薛航 张宁 张越 索科 《激光技术》 CAS CSCD 北大核心 2024年第4期556-564,共9页
为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,... 为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,并进行了背景分割和光谱信息的提取,去除受噪声和杂散光影响大的波段后,运用Savitzky-Golay卷积平滑对400 nm~900 nm范围的波长进行预处理;采用SPA降维及均方根误差值选择了25个特征波长,同时利用PSO-BP神经网络的初始权重和阈值,构建PSO-BP模型作为分类器进行了实验,取得了测试集识别准确率为98.7%、kappa系数为0.98及遗漏误差为3的数据。结果表明,相较4个对比方法构建的分类模型,该模型的准确率分别提高了2.1%、8.6%、3.9%和4.3%。该方法在基于高光谱成像的花生品种分类技术中具有很好的应用前景,为花生品种的高精度、快速无损分类提供了新思路。 展开更多
关键词 光谱学 图像分类 连续投影算法 粒子群算法 后向传播神经网络 花生
下载PDF
Multi-objective Optimization of Non-uniform Beam for Minimum Weight and Sound Radiation 被引量:1
9
作者 Furui Xiong Mengxin He +2 位作者 Yousef Naranjani Qian Ding Jianqiao Sun 《Transactions of Tianjin University》 EI CAS 2017年第4期380-393,共14页
A multi-objective optimization of non-uniform beams is presented for minimum radiated sound power and weight. The transfer matrix method is used to compute the structural and acoustic responses of a non-uniform beam a... A multi-objective optimization of non-uniform beams is presented for minimum radiated sound power and weight. The transfer matrix method is used to compute the structural and acoustic responses of a non-uniform beam accurately and efficiently. The multi-objective particle swarm optimization technique is applied to search the Pareto optimal solutions that represent various compromises between weight and sound radiation. Several constraints are imposed, which substantially reduce the volume fraction of feasible solutions in the design space. Two non-uniform beams with different boundary conditions are studied to demonstrate the multi-objective optimal designs of the structure. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Acoustic generators Acoustic properties Acoustic wave propagation Acoustic wave scattering optimal systems Pareto principle particle swarm optimization (PSO) Transfer matrix method
下载PDF
Auto recognition of carbonate microfacies based on an improved back propagation neural network
10
作者 王玉玺 刘波 +4 位作者 高计县 张学丰 李顺利 刘建强 田泽普 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3521-3535,共15页
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation... Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time. 展开更多
关键词 carbonate microfacies quantitative recognition bayes stepwise discrimination backward propagation neural network particle swarm optimizer
下载PDF
Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm
11
作者 Dazhi Wang Pengyi Pan Bowen Niu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1535-1555,共21页
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ... The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency. 展开更多
关键词 Competition mechanism Levenberg-Marquardt back propagation neural network multi-objective particle swarm optimization algorithm permanent magnet eddy current coupler
下载PDF
Multi-Objective Optimization with Artificial Neural Network Based Robust Paddy Yield Prediction Model
12
作者 S.Muthukumaran P.Geetha E.Ramaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期215-230,共16页
Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty per... Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield. 展开更多
关键词 ANN back propagation algorithm genetic algorithm multi objective particle swarm optimization algorithm
下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究
13
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
下载PDF
改进PSO-BP算法的短期电力负荷预测方法
14
作者 杨亚东 耿丽清 +2 位作者 杨耿煌 郝夏毅 陈庆斌 《天津职业技术师范大学学报》 2024年第3期15-20,共6页
针对电力负荷的周期性、随机波动性等复杂特点易造成预测精度低等问题,提出一种基于相似日分析、混沌映射优化粒子群算法(particle swarm optimization,PSO)和BP神经网络相结合的短期电力负荷预测方法。采用乘积法量化气象因素与时间因... 针对电力负荷的周期性、随机波动性等复杂特点易造成预测精度低等问题,提出一种基于相似日分析、混沌映射优化粒子群算法(particle swarm optimization,PSO)和BP神经网络相结合的短期电力负荷预测方法。采用乘积法量化气象因素与时间因素间的综合相似度,选出综合相似度高的若干历史日作为相似日集;采用相似日集与非相似日集分别训练PSO-BP模型,相似日集的平均绝对百分比误差(mean absolute percentage error,MAPE)降低3.9%;利用Sine映射对PSO中粒子的速度和位置进行优化,增强PSO算法的全局搜索能力和寻优精度,采用2个集合分别训练SPSO-BP模型,相似日集的MAPE降低19.4%。结果表明,基于相似日分析和SPSO-BP模型的短期电力负荷预测方法可有效提高电力负荷的预测精度。 展开更多
关键词 短期电力负荷预测 相似日 粒子群算法 BP神经网络 混沌映射
下载PDF
基于PSO-BP神经网络的Savonius型叶轮阵列消波性能优化
15
作者 盛勇 宋瑞银 +3 位作者 杨状状 刘博宇 吴瑞明 任聪杰 《船舶工程》 CSCD 北大核心 2024年第5期160-168,共9页
为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消... 为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消波性能预测模型。将采用该模型与采用BP网络模型和GA-BP网络模型得到的平均绝对误差、均方根误差和决定系数R^(2)指标进行对比,结果表明,采用PSO-BP神经网络模型优化能得到误差更小、更精准的预测结果。当相邻叶轮间距分别为0.62 m和0.41 m、各叶轮入水深度分别为0.15 m、0.18 m和0.19 m时,S型叶轮阵列具有相对最佳的消波性能。 展开更多
关键词 Savonius型叶轮 消波性能 粒子群优化(PSO)算法 反向传播(BP)神经网络
下载PDF
基于PSO-BP模型的差速器装配密封质量预测
16
作者 徐静 杨德岭 《森林工程》 北大核心 2024年第5期134-144,共11页
为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输... 为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输入变量,差速器总成泄漏值作为输出变量,创建基于粒子群(PSO)算法优化BP神经网络(PSO-BP)的预测模型,结果表明,由灰色关联分析简化后的PSO-BP预测方法得到的平均相对误差最小为1.18%。在此基础上,应用PyQt5 GUI库开发差速器总成泄漏值预测系统。研究结果可以为差速器总成密封质量预测提供理论依据。 展开更多
关键词 运材车辆 差速器 密封质量 灰色关联分析算法 粒子群优化算法 反向传播神经网络
下载PDF
基于PSO-BP神经网络算法矿井瓦斯涌出量回归预测应用
17
作者 刘大可 张浩强 郭翔 《中国矿山工程》 2024年第3期38-43,共6页
本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络... 本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络算法的平均绝对误差、均方误差、均方根误差、平均绝对百分比误差和预测准确率等评价指标。结果表明,基于PSO-BP神经网络算法的瓦斯涌出量预测模型具有更高的准确性,能够满足矿山实际需求,具有较好的实用性和创新性,为其他矿井在瓦斯涌出量预测方面提供了一定的借鉴意义。 展开更多
关键词 瓦斯涌出量预测 粒子群优化算法 反向传播神经网络 回归预测 评价指标
下载PDF
基于改进PSO-BP故障诊断神经网络的挖掘机液压系统
18
作者 郭京峰 《现代制造技术与装备》 2024年第11期37-39,共3页
由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系... 由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系统数据,对采集的数据进行预处理,利用PSO对BP神经网络进行迭代训练、优化网络参数,利用改进BP神经网络挖掘液压系统数据,识别诊断系统故障。实验结果表明,所提方法的平均绝对误差百分比不超过1%,漏诊比例也不超过1%,能够实现对挖掘机液压系统故障的精准诊断。 展开更多
关键词 改进粒子群优化算法(PSO) 反向传播(BP)神经网络 挖掘机 液压系统 故障诊断
下载PDF
基于PSO-BP的阀冷却系统阀门开度分类预测模型
19
作者 吴健超 郑昊岳 《自动化与信息工程》 2024年第5期14-19,31,共7页
针对阀冷却系统内部的复杂性与外部环境的多变性,准确预测阀门开度以适应不同工况需求的问题,提出一种基于PSO-BP的阀冷却系统阀门开度分类预测模型。利用粒子群优化(PSO)算法优化反向传播(BP)神经网络的初始权重和偏置,改善BP神经网络... 针对阀冷却系统内部的复杂性与外部环境的多变性,准确预测阀门开度以适应不同工况需求的问题,提出一种基于PSO-BP的阀冷却系统阀门开度分类预测模型。利用粒子群优化(PSO)算法优化反向传播(BP)神经网络的初始权重和偏置,改善BP神经网络易陷入局部最优解和收敛速度慢的情况。采用工业现场收集的阀冷却系统实测数据对PSO-BP预测模型进行训练和验证,并与传统的BP预测模型进行仿真对比分析。仿真结果表明,PSO-BP预测模型对阀门开度的分类预测准确率达到100%,且具有良好的学习和泛化能力,为阀冷却系统的智能控制提供了一种新的解决方案。 展开更多
关键词 阀冷却系统 反向传播神经网络 粒子群优化算法 阀门开度分类预测
下载PDF
基于PCA的PSO-BP入侵检测研究 被引量:23
20
作者 刘珊珊 谢晓尧 +3 位作者 景凤宣 徐洋 张帅 汪自旺 《计算机应用研究》 CSCD 北大核心 2016年第9期2795-2798,共4页
为了提高入侵检测系统的检测率、实时性及降低误报率,提出一种基于主成分分析方法(PCA)的变惯性因子粒子群算法(PSO)优化BP神经网络算法。该方法结合了PCA理论、BP局部搜索和PSO的全局寻优能力,在数据预处理中,通过主成分分析方法进行... 为了提高入侵检测系统的检测率、实时性及降低误报率,提出一种基于主成分分析方法(PCA)的变惯性因子粒子群算法(PSO)优化BP神经网络算法。该方法结合了PCA理论、BP局部搜索和PSO的全局寻优能力,在数据预处理中,通过主成分分析方法进行特征提取,作为BP网络的输入量。在反复训练学习过程中,通过变惯性因子粒子群算法优化BP神经网络的权值和阈值,达到训练误差精度范围内,将优化过的BP网络用于入侵检测。通过实验分析和比较,该算法提高了入侵检测的正确率、泛化能力和实时性,降低了误报率和漏报率,加快了收敛速度,迭代次数少,有一定的研究意义。 展开更多
关键词 主成分分析 粒子群优化 BP神经网络 入侵检测
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部