Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle fil...Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.展开更多
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s...The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability ...Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.展开更多
Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance o...Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12 months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%–1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23–560 nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency.展开更多
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific...Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific content can not be determined.In this paper, a multi-target vehicle recognition and tracking algorithm based on YOLO v5 network architecture is proposed.The specific content of moving objects are identified by the network architecture, furthermore, the simulated annealing chaotic mechanism is embedded in particle swarm optimization-Gauss particle filter algorithm.The proposed simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm(SA-CPSO-GPF) is used to track moving objects.The experiment shows that the algorithm has a good tracking effect for the vehicle in the monitoring range.The root mean square error(RMSE), running time and accuracy of the proposed method are superior to traditional methods.The proposed algorithm has very good application value.展开更多
The current particle filtering map matching algorithm has problems such as low map utilization and poor accuracy of turnoff positioning, etc. This paper proposed an improved particle filtering-based map-matching algor...The current particle filtering map matching algorithm has problems such as low map utilization and poor accuracy of turnoff positioning, etc. This paper proposed an improved particle filtering-based map-matching algorithm for the inertial positioning of personnel. The historical moment position constraint and feasible region constraint of particles were introduced in this paper. A resampling method based on multi-stage backtracking of particles was proposed. Therefore, the effectiveness of newly generated particles could be guaranteed. The utilization rate of map information could be improved, thus enhancing the accuracy of personnel localization. The walking experiment results showed that, compared with the traditional PDR algorithm, the proposed method had higher localization accuracy and better repeatability of the localization trajectory for multi-turn paths. Under the total travel of 480 meters, the deviation of the starting end point was less than 2 meters, which was about 0.4% of the total travel.展开更多
The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking...The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.展开更多
An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken ...An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.展开更多
A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-trackin...A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-tracking problem lies in the fact that the maneuverabilityat every step is of high uncertainties. Here a new smoothing particle filter algorithm is proposed,which combines the particle filter to tackle the non-linear and non-Gaussian peculiarities of theproblem, together with smoothing of the PDF of system modes and thus settles the estimate problem ofthe target maneuverability. The simulation comparison with the auxiliary particle filters showsthat the approach has superiority and yields performance improvements in solving nonlinear trackingproblems.展开更多
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt...The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.展开更多
This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West...This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state...In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intent...In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity.展开更多
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ...For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.展开更多
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-...To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.展开更多
文摘Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.
基金the National Natural Science Foundation of China(Grant No.42271436)the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2021MD030,ZR2021QD148).
文摘The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
文摘Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.
基金financially supported by Egged Israel Transport Cooperative Society Ltd.
文摘Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12 months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%–1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23–560 nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency.
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
基金Supported by the National Key R&D Plan of China (2021YFE0105000)the National Natural Science Foundation of China (52074213)+1 种基金Shaanxi Key R&D Plan Project (2021SF-472)Yulin Science and Technology Plan Project (CXY-2020-036)。
文摘Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific content can not be determined.In this paper, a multi-target vehicle recognition and tracking algorithm based on YOLO v5 network architecture is proposed.The specific content of moving objects are identified by the network architecture, furthermore, the simulated annealing chaotic mechanism is embedded in particle swarm optimization-Gauss particle filter algorithm.The proposed simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm(SA-CPSO-GPF) is used to track moving objects.The experiment shows that the algorithm has a good tracking effect for the vehicle in the monitoring range.The root mean square error(RMSE), running time and accuracy of the proposed method are superior to traditional methods.The proposed algorithm has very good application value.
文摘The current particle filtering map matching algorithm has problems such as low map utilization and poor accuracy of turnoff positioning, etc. This paper proposed an improved particle filtering-based map-matching algorithm for the inertial positioning of personnel. The historical moment position constraint and feasible region constraint of particles were introduced in this paper. A resampling method based on multi-stage backtracking of particles was proposed. Therefore, the effectiveness of newly generated particles could be guaranteed. The utilization rate of map information could be improved, thus enhancing the accuracy of personnel localization. The walking experiment results showed that, compared with the traditional PDR algorithm, the proposed method had higher localization accuracy and better repeatability of the localization trajectory for multi-turn paths. Under the total travel of 480 meters, the deviation of the starting end point was less than 2 meters, which was about 0.4% of the total travel.
基金The National Natural Science Foundation of China(No60672094)
文摘The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2013AA12A201)supported by the National Hi-tech Research and Development Program of China+1 种基金Project(2012ZDP08)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.
文摘A new particle filter is presented for nonlinear tracking problems. Inpractice, maneuvering target-tracking systems are usually nonlinear and incompletely observed, andthe main difficulty of maneuvering target-tracking problem lies in the fact that the maneuverabilityat every step is of high uncertainties. Here a new smoothing particle filter algorithm is proposed,which combines the particle filter to tackle the non-linear and non-Gaussian peculiarities of theproblem, together with smoothing of the PDF of system modes and thus settles the estimate problem ofthe target maneuverability. The simulation comparison with the auxiliary particle filters showsthat the approach has superiority and yields performance improvements in solving nonlinear trackingproblems.
基金supported in part by the National Key R&D Program of China (2022ZD0116401,2022ZD0116400)the National Natural Science Foundation of China (62203016,U2241214,T2121002,62373008,61933007)+2 种基金the China Postdoctoral Science Foundation (2021TQ0009)the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
基金primarily supported by the Chinese National Natural Science Foundation of China(Grant No. G42192553)Open Fund of Fujian Key Laboratory ofSevere Weather and Key Laboratory of Straits Severe Weather(Grant No. 2023KFKT03)+6 种基金the Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(Grant No. 2023BHR-Y20)the Open Fund of the State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS202321)the Program of Shanghai Academic/Technology Research Leader(Grant No. 21XD1404500)the Shanghai Typhoon Research Foundation (Grant No. TFJJ202107)the Chinese National Natural Science Foundation of China (Grant No. G41805016)the National Meteorological Center Foundation (Grant No. FY-APP-2021.0207)the High Performance Computing Center of Nanjing University of Information Science&Technology for their support of this work
文摘This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金National Natural Science Foundation of China (60572023)
文摘In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金Project supported by China Postdoctoral Science Foundation (No.20060400313)partly by Zhejiang Postdoctoral Science Founda-tion of China (No. 2006-bsh-25)
文摘In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity.
基金This project was supported by the National Natural Science Foundation of China (50405017) .
文摘For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
基金Project(60535010) supported by the National Nature Science Foundation of China
文摘To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.