期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Particle fracture and debonding during orthogonal machining of metal matrix composites 被引量:4
1
作者 A. Pramanik Liang-Chi Zhang 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第1期77-82,共6页
This paper investigates the particle fracture and debonding during machining of metal matrix composite (MMC) due to developed stress and strain, and interaction with moving tool by finite element analysis. The machi... This paper investigates the particle fracture and debonding during machining of metal matrix composite (MMC) due to developed stress and strain, and interaction with moving tool by finite element analysis. The machining zone was divided into three regions: primary, secondary and tertiary deformation zones. The tendency of particles to fracture in each deformation zone was investigated. The findings of this study were also discussed with respect to the experimental results available in the literature. It was found that particles at the cutting path inthe tertiary deformation zone fractured as it interacted with tool. In the secondary deformation zone, particles interacted with other particles as well as cutting tool. This caused debonding and fracture of huge number of particles as those were moving up along the rake face with the chips. No particle fracture was noted at the primary deformation zone. The results obtained from finite element analysis were very similar to those obtained from experimental studies. 展开更多
关键词 particle reinforced metal matrix composite particle fracture particle debonding Finite elementanalysis Strain distribution
原文传递
Compressive response and microstructural evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite 被引量:12
2
作者 Han WANG Hai-ming ZHANG +2 位作者 Zhen-shan CUI Zhe CHEN Dong CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1235-1248,共14页
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation... The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided. 展开更多
关键词 in-situ TiB2 particles aluminum matrix composite hot compression deformation particle fracture interface debonding dynamic recrystallization
下载PDF
Microstructure-based three-dimensional characterization of chip formation and surface generation in the machining of particulate-reinforced metal matrix composites 被引量:2
3
作者 Qi Wu Liangchi Zhang 《International Journal of Extreme Manufacturing》 EI 2020年第4期74-85,共12页
Particulate-reinforced metal matrix composites(PRMMCs)are difficult to machine due to the inclusion of hard,brittle reinforcing particles.Existing experimental investigations rarely reveal the complex material removal... Particulate-reinforced metal matrix composites(PRMMCs)are difficult to machine due to the inclusion of hard,brittle reinforcing particles.Existing experimental investigations rarely reveal the complex material removal mechanisms(MRMs)involved in the machining of PRMMCs.This paper develops a three-dimensional(3D)microstructure-based model for investigating the MRM and surface integrity of machined PRMMCs.To accurately mimic the actual microstructure of a PRMMC,polyhedrons were randomly distributed inside the matrix to represent irregular SiC particles.Particle fracture and matrix deformation and failure were taken into account.For the model’s capability comparison,a two-dimensional(2D)analysis was also conducted.Relevant cutting experiments showed that the established 3D model accurately predicted the material removal,chip morphology,machined surface finish,and cutting forces.It was found that the matrix-particle-tool interactions led to particle fractures,mainly in the primary shear and secondary deformation zones along the cutting path and beneath the machined surface.Particle fracture and dilodegment greatly influences the quality of a machined surface.It was also found that although a 2D model can reflect certain material removal features,its ability to predict microstructural variation is limited. 展开更多
关键词 particulate-reinforced metal-matrix composites MMCS finite element three-dimensional modelling particle fracture material removal surface integrity
下载PDF
Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents 被引量:2
4
作者 Jie Chen Chonggao Bao +2 位作者 Wenhui Chen Li Zhang Jinling Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期668-674,共7页
In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resul... In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries. 展开更多
关键词 Magnesium matrix composite AlN particle Bending strength fracture behavior Microstructure Powder metallurgy
原文传递
An analytical approach to modeling stress-strain relationship of particle-reinforced metal matrix composites
5
作者 Zhao-Bing Xiang Jun-Hui Nie +2 位作者 Shao-Hua Wei Tao Zuo Jian-Zhong Fan 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3903-3910,共8页
An analytical model was established to simulate the stress-strain curves of particle-reinforced metal matrix composites by the classical stress equilibrium equation and secant modulus method,where particle cracking an... An analytical model was established to simulate the stress-strain curves of particle-reinforced metal matrix composites by the classical stress equilibrium equation and secant modulus method,where particle cracking and matrix tearing were taken into consideration.The stress-strain curves of the composites predicted by the model fit the experimental curves very well.The stressstrain relationship of the matrix affected by the particles is predicted exactly,and it is found that the yield stress of the matrix is influenced obviously by the particle content.The yield strength of the composites is also predicted by the model,and the results fit the experimental data very well. 展开更多
关键词 Strengthening mechanism Yield strength particle fracture Matrix stress-strain curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部