The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or...The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.展开更多
A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of...A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.展开更多
Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than th...Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.展开更多
A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculatio...A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code, which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks. The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.展开更多
Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and ...The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.展开更多
This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimizatio...This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimization)algorithm to optimize an AUV mission conducted in an unknown,dynamic and cluttered ocean environment.The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time.The optimization was based on the onboard sensor data measured from the environment,which consists of a priori unknown dynamic obstacles and spatiotemporal currents.Different sensor arrangements for the forward-looking sonar and horizontal acoustic Doppler current profiler(H-ADCP)were considered in 2D and 3D simulations.Based on the simulation results,the SDEQPSO path replanner was found to be capable of generating a time-optimal path that offered up to 13%reduction in travel time compared to the situation where the vehicle simply followed a path with the shortest distance.The proposed replanning technique also showed consistently better performance over a reactive path planner in terms of solution quality,stability,and computational efficiency.Robustness of the replanner was verified under stochastic process using the Monte Carlo method.The generated path fulfilled the vehicle’s safety and physical constraints,while intelligently exploiting ocean currents to improve the vehicle’s efficiency.展开更多
Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering...Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering. However,there is no consistency framework to solve the RUL recursive estimation for the complex degenerate systems/device.In this paper, state space model(SSM) with Bayesian online estimation expounded from Markov chain Monte Carlo(MCMC) to Sequential Monte Carlo(SMC) algorithm is presented in order to derive the optimal Bayesian estimation.In the context of nonlinear & non-Gaussian dynamic systems, SMC(also named particle filter, PF) is quite capable of performing filtering and RUL assessment recursively. The underlying deterioration of a system/device is seen as a stochastic process with continuous, nonreversible degrading. The state of the deterioration tendency is filtered and predicted with updating observations through the SMC procedure. The corresponding remaining useful life of the system/device is estimated based on the state degradation and a predefined threshold of the failure with two-sided criterion. The paper presents an application on a milling machine for cutter tool RUL assessment by applying the above proposed methodology. The example shows the promising results and the effectiveness of SSM and SMC online assessment of RUL.展开更多
Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powe...Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.展开更多
Since many industrial applications rely on the processing of densely packed and moving granular ma-terial,obtaining bulk internal information on the particle movement inside the reactors is of great importance.Such in...Since many industrial applications rely on the processing of densely packed and moving granular ma-terial,obtaining bulk internal information on the particle movement inside the reactors is of great importance.Such information can be delivered by Positron Emission Particle Tracking(PEPT).By marking pellets with a positron-emitting radioisotope,the position of these tracer particles can be determined via the time-of-flight differences of the emitted gamma-ray pairs.The current paper proposes a PET-like detector system based on cost-effective organic plastic scintillators instead of the more common but expensive inorganic scintillators.This system is currently under construction and was tested for its resolution and efficiency in this simulation study.Using Monte Carlo simulations and the software toolkit Geant4,three different geometries(an empty glass box,a generic grate system,and a cubic box of 1 m3 completely filled with pellets)were investigated,leading to a spatial resolution in the millimeter range and an efficiency,defined as the ratio of reconstructed decay locations to simulated decays,of 2.7%,1.4%,and 0.3%.展开更多
提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒...提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒子的数量较粒子总数大大减少,该方法能避免直接将Monte Carlo方法应用于多机器人定位中产生的维数灾的问题,可以在保证精度的情况下降低运算复杂度.仿真结果表明,该方法能较好地满足多机器人自定位的要求.展开更多
基金supported by the National Natural science Foundation of China (No. 42127807)the Sichuan Science and Technology Program (No. 2020YJ0334)the Sichuan Science and Technology Breeding Program (No. 2022041)。
文摘The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.
文摘A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.
文摘Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.
文摘A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code, which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks. The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
基金Projects(51206011,U1937201)supported by the National Natural Science Foundation of ChinaProject(20200301040RQ)supported by the Science and Technology Development Program of Jilin Province,China+1 种基金Project(JJKH20190541KJ)supported by the Education Department of Jilin Province,ChinaProject(18DY017)supported by Changchun Science and Technology Program of Changchun City,China。
文摘The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.
基金The authors acknowledge Autonomous Maritime Systems Laboratory(AMSL)in the Australian Maritime College(AMC)for providing the data from the open water trial conducted in July 2017 at Beauty Point,Tasmania,Australia.
文摘This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimization)algorithm to optimize an AUV mission conducted in an unknown,dynamic and cluttered ocean environment.The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time.The optimization was based on the onboard sensor data measured from the environment,which consists of a priori unknown dynamic obstacles and spatiotemporal currents.Different sensor arrangements for the forward-looking sonar and horizontal acoustic Doppler current profiler(H-ADCP)were considered in 2D and 3D simulations.Based on the simulation results,the SDEQPSO path replanner was found to be capable of generating a time-optimal path that offered up to 13%reduction in travel time compared to the situation where the vehicle simply followed a path with the shortest distance.The proposed replanning technique also showed consistently better performance over a reactive path planner in terms of solution quality,stability,and computational efficiency.Robustness of the replanner was verified under stochastic process using the Monte Carlo method.The generated path fulfilled the vehicle’s safety and physical constraints,while intelligently exploiting ocean currents to improve the vehicle’s efficiency.
基金Supported by Basic Research and Development Plan of China (973 Program,Grant Nos.2011CB013401,2011CB013402)Special Fundamental Research Funds for Central Universities of China(Grant No.DUT14QY21)
文摘Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering. However,there is no consistency framework to solve the RUL recursive estimation for the complex degenerate systems/device.In this paper, state space model(SSM) with Bayesian online estimation expounded from Markov chain Monte Carlo(MCMC) to Sequential Monte Carlo(SMC) algorithm is presented in order to derive the optimal Bayesian estimation.In the context of nonlinear & non-Gaussian dynamic systems, SMC(also named particle filter, PF) is quite capable of performing filtering and RUL assessment recursively. The underlying deterioration of a system/device is seen as a stochastic process with continuous, nonreversible degrading. The state of the deterioration tendency is filtered and predicted with updating observations through the SMC procedure. The corresponding remaining useful life of the system/device is estimated based on the state degradation and a predefined threshold of the failure with two-sided criterion. The paper presents an application on a milling machine for cutter tool RUL assessment by applying the above proposed methodology. The example shows the promising results and the effectiveness of SSM and SMC online assessment of RUL.
基金the National Science Foundation for Distinguished Young Scholars of China(No.10225526)the Knowledge Innovation Program of the Chinese Academy Sciences(No.KSCX2-SW-324)the Foundation for University Key Teachers by the Ministry of Education of China(No.2005jq1135)
文摘Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.
基金funded by the DeutscheForschungsgemeinschaft(DFG,German Research Foundation)through 422037413-CRC/TRR 287"BULK-REACTION"。
文摘Since many industrial applications rely on the processing of densely packed and moving granular ma-terial,obtaining bulk internal information on the particle movement inside the reactors is of great importance.Such information can be delivered by Positron Emission Particle Tracking(PEPT).By marking pellets with a positron-emitting radioisotope,the position of these tracer particles can be determined via the time-of-flight differences of the emitted gamma-ray pairs.The current paper proposes a PET-like detector system based on cost-effective organic plastic scintillators instead of the more common but expensive inorganic scintillators.This system is currently under construction and was tested for its resolution and efficiency in this simulation study.Using Monte Carlo simulations and the software toolkit Geant4,three different geometries(an empty glass box,a generic grate system,and a cubic box of 1 m3 completely filled with pellets)were investigated,leading to a spatial resolution in the millimeter range and an efficiency,defined as the ratio of reconstructed decay locations to simulated decays,of 2.7%,1.4%,and 0.3%.
文摘提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒子的数量较粒子总数大大减少,该方法能避免直接将Monte Carlo方法应用于多机器人定位中产生的维数灾的问题,可以在保证精度的情况下降低运算复杂度.仿真结果表明,该方法能较好地满足多机器人自定位的要求.