Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift ...A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift kinetic equation. The formula derived in this paper is used to calculate the dispersion relation of geodesic acoustic mode, which is then compared with that of the gyro-kinetic analytic formula.展开更多
Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on ind...Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83.展开更多
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.
基金partially supported by the JSPS-CAS Core-University program in the field of 'Plasma and Nuclear Fusion'
文摘A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift kinetic equation. The formula derived in this paper is used to calculate the dispersion relation of geodesic acoustic mode, which is then compared with that of the gyro-kinetic analytic formula.
基金This work was supported by the National Key Research and Development Plan from the Ministry of Science and Technology of China through Grant No. 2016YFC0700500, as well as funding from Innovative Research Groups of the National Natural Science Foundation of China (No. 51521005), and the National Natural Science Foundation of China (No. 51678328 & 21221004 & 41227805 & 21190054).
文摘Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83.