期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Numerical Simulations of Snow Accumulation in the Bogie Region of a Train Considering Snow Particle Rotation
1
作者 Hong Lan Jiye Zhang +1 位作者 Yao Zhang Lu Cai 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2337-2352,共16页
To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of sn... To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of snow particle diameter and train speed on the ensuing dynamics.It is shown that considering snow particle rotational motion causes significant deviation in the particle trajectories with respect to non-rotating particles.Such a deviation increases with larger snow particle diameters and higher train speeds.The snow accumulation on the overall surface of the bogie increases,and the amount of snow on the vibration reduction device varies greatly.In certain conditions,the amount of accumulated snow can increase by several orders of magnitudes. 展开更多
关键词 High-speed train BOGIE snow particle rotation discrete phase model snow accumulation
下载PDF
Analysis of particle dispersion in a turbulent flow considering particle rotation 被引量:1
2
作者 Wenshi Huang Yang Zhang +2 位作者 Yuxin Wu Jingyu Wang Minmin Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期29-39,共11页
Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of n... Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of non-spherical particles considering particle drag correction,lift,and rotation was established.Based on the Eulerian-Lagrangian simulation,the dispersion characteristics of spherical and nonspherical particles with different Stokes numbers in a high-speed turbulent jet were analyzed and compared considering the effect of particle rotation.The results show that,the differences in particle dispersion and radial velocity fluctuation between non-spherical particles and spherical particles in the jet are significant,especially when Stokes number is large.Moreover,the effects of different type of forces on the dispersion of non-spherical particles and spherical particles were compared in detail,which revealed that the change of the Magnus force caused by the increase in the angular velocity of non-spherical particles plays a dominant role in the differences of particle dispersion. 展开更多
关键词 DISPERSION particle particle-laden flows particle rotation Turbulent flow
下载PDF
Experimental study on the spatial distribution of particle rotation in the upper dilute zone of a cold CFB riser 被引量:1
3
作者 Xue-cheng WU Qin-hui WANG +3 位作者 Chen TIAN Zhong-yang LUO Meng-xiang FANG Ke-fa CEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期922-931,共10页
Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold ... Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed(CFB) riser. It is shown that in the horizontal direction,the average rotation speed in the near-wall area is larger than that in the center area,while in the vertical direction,it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size,particle shape,particle number density,particle collision behavior,and the surrounding flow field,etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux,however,takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases. 展开更多
关键词 particle rotation Gas-solid two-phase flow Circulating fluidized bed (CFB)
下载PDF
Schrdinger Equation of a Particle on a Rotating Curved Surface
4
作者 杜龙 王永龙 +2 位作者 梁国华 康广振 宗红石 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期1-4,共4页
We derive the Schr6dinger equation of a particle constrained to move on a rotating curved surface S. Using the thin-layer quantization scheme to confine the particle on S, and with a proper choice of gauge transformat... We derive the Schr6dinger equation of a particle constrained to move on a rotating curved surface S. Using the thin-layer quantization scheme to confine the particle on S, and with a proper choice of gauge transformation for the wave function, we obtain the well-known geometric potentiM Vg and an additive Coriolis-induced geometric potential in the co-rotationM curvilinear coordinates. This novel effective potential, which is included in the surface Schr6dinger equation and is coupled with the mean curvature of S, contains an imaginary part in the general case which gives rise to a non-Hermitian surface Hamiltonian. We find that the non-Hermitian term vanishes when S is a minimal surface or a revolution surface which is axially symmetric around the rolling axis. 展开更多
关键词 in of SCHR dinger Equation of a particle on a Rotating Curved Surface on IS
下载PDF
Alternating-current relaxation of a rotating metallic particle
5
作者 聂国熹 田文佳 +1 位作者 黄吉平 顾国庆 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期433-438,共6页
Based on a first-principles approach,we establish an alternating-current(AC) relaxation theory for a rotating metallic particle with complex dielectric constant εα=εα-iσα/ω0.Here εα is the real part,σα th... Based on a first-principles approach,we establish an alternating-current(AC) relaxation theory for a rotating metallic particle with complex dielectric constant εα=εα-iσα/ω0.Here εα is the real part,σα the conductivity,ω0 the angular frequency of an AC electric field,and i=-11/2.Our theory yields an accurate interparticle force,which is in good agreement with the existing experiment.The agreement helps to show that the relaxations of two kinds of charges,namely,surface polarized charges(described by εα) and free charges(corresponding to σα),contribute to the unusually large reduction in the attracting interparticle force.This theory can be adopted to determine the relaxation time of dynamic particles in various fields. 展开更多
关键词 AC relaxation theory rotating metallic particle interparticle force
下载PDF
Simulation of Solid Suspension in a Stirred Tank Using CFD-DEM Coupled Approach* 被引量:16
6
作者 邵婷 胡银玉 +2 位作者 王文坦 金涌 程易 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第10期1069-1081,共13页
Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions... Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank. 展开更多
关键词 stirred tank solid suspension particle rotation computational fluid dynamics discrete element method
下载PDF
End wall effect on particle motion in a chute flow 被引量:2
7
作者 Ran Wang Ran Li +2 位作者 Shuaishuai Wang Quan Chen Hui Yang 《Particuology》 SCIE EI CAS CSCD 2021年第1期102-108,共7页
The influence of the end wall of a chute on the rotation of internal characteristic particles is mainly on the z-axis.A measurement device based on inertial measurement technology does not require the assistance of ex... The influence of the end wall of a chute on the rotation of internal characteristic particles is mainly on the z-axis.A measurement device based on inertial measurement technology does not require the assistance of external information;hence,it is especially suitable for measuring the angular and translational velocities of internal characteristic particles.To study the influence of the end wall of the chute on the motions of the internal characteristic particles,the z-axis rotational and translational velocities of the internal characteristic particles in the chute were measured,and it was found that the rotational velocity about the z-axis differs according to the initial position.The z-axis angular velocity of a characteristic particle at the centre fluctuates near 0,and the average value approaches 0.The z-axis angular velocity of a characteristic particle at the left end wall is typically negative.This phenomenon is due to the influence of the end wall on the rotational motions of particles with initial positions that are near the end wall.In addition,the average translational velocity of the characteristic particles is also affected by the end wall.The distributions of the average z-axis angular velocity and the average translational velocity are quantitatively analysed,and the correlation between the tilt angle of the chute and the end wall effect is studied. 展开更多
关键词 CHUTE particle rotation End wall
原文传递
Massive Vector Particles Tunneling from the Neutral Rotating Anti-de Sitter Black Holes in Conformal Gravity
8
作者 李然 赵俊坤 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第4期469-472,共4页
We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter(AdS) black holes in conformal gravity by using the tunneling method.It is well known that the dynamics of mas... We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter(AdS) black holes in conformal gravity by using the tunneling method.It is well known that the dynamics of massive vector particles are governed by the Proca field equation.Applying WKB approximation to the Proca equation,the tunneling probabilities and radiation spectrums of the emitted particles are derived.Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered,which is consistent with the previous result in the literature. 展开更多
关键词 vector particle tunneling Hawking radiation rotating AdS black hole
原文传递
Effects of liquid feed rate and impeller rotation speed on heat transfer in a mechanically fluidized reactor
9
作者 Dhiraj Kankariya Cedric Briens +1 位作者 Dominic Pjontek Stefano Tacchino 《Particuology》 SCIE EI CAS CSCD 2018年第4期25-32,共8页
A mechanically fluidized reactor (MFR) is a novel and compact reactor used for biomass pyrolysis. Endothermic biomass pyrolysis requires heat provided from the wall of the MFR. Meanwhile, mixing with a vertical stir... A mechanically fluidized reactor (MFR) is a novel and compact reactor used for biomass pyrolysis. Endothermic biomass pyrolysis requires heat provided from the wall of the MFR. Meanwhile, mixing with a vertical stirrer helps achieve effective heat transfer from the wall to the bed. Here, the heat trans- fer characteristics between the wall of a 1.0-L MFR and its bed of mechanically fluidized sand particles were studied. An induction heating system was used to heat the wall, while a vertical blade stirrer was used for mixing. Heat transfer measurements were carried out using silica sand particles, having three average Sauter mean diameters: 190, 300, and 600 p.m. The overall wall-to-bed heat transfer coeffi- cients were estimated using temperature measurements taken during continuous injection of water onto the fluidized bed. The overall heat transfer coefficient for bed temperatures of 500-700℃ increased as particle size increased or superficial velocity of the vaporized liquid increased. Effect of impeller rotation speed also was investigated. Typically, the overall heat transfer coefficient increased as rotation speed increased. The wall-to-bed heat transfer coefficients obtained in this study are comparable to estimates from traditional bubbling fluidized beds, even at vapor velocities below the minimum fluidization veloccity. 展开更多
关键词 Mechanical fluidization Induction heating Impeller rotation Heat transfer particle size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部