期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Gold/Mg-Al mixed oxides catalysts for oxidative esterification of methacrolein:Effects of support size and composition on gold loading 被引量:1
1
作者 Wangtao Li Qiancheng Zheng +2 位作者 Huayu Zhang Yunsheng Dai Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期128-138,共11页
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo... Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation. 展开更多
关键词 Gold catalysts Oxidative esterification Support particle size effect Mass transfer DISTRIBUTIONS Optimization
下载PDF
Effects of Ni particle size on amination of monoethanolamine over Ni-Re/SiO_2 catalysts 被引量:6
2
作者 Lei Ma Li Yan +1 位作者 An-Hui Lu Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期567-579,M0004,共14页
Ni-Re/SiO2 catalysts with controllable Ni particle sizes(4.5–18.0 nm)were synthesized to investigate the effects of the particle size on the amination of monoethanolamine(MEA).The catalysts were characterized by vari... Ni-Re/SiO2 catalysts with controllable Ni particle sizes(4.5–18.0 nm)were synthesized to investigate the effects of the particle size on the amination of monoethanolamine(MEA).The catalysts were characterized by various techniques and evaluated for the amination reaction in a trickle bed reactor at 170℃,8.0 MPa,and 0.5 h^-1 liquid hourly space velocity of MEA(LHSVMEA)in NH3/H2 atmosphere.The Ni-Re/SiO2 catalyst with the lowest Ni particle size(4.5 nm)exhibited the highest yield(66.4%)of the desired amines(ethylenediamine(EDA)and piperazine(PIP)).The results of the analysis show that the turnover frequency of MEA increased slightly(from 193 to 253 h^-1)as the Ni particle sizes of the Ni-Re/SiO2 catalysts increased from 4.5 to 18.0 nm.Moreover,the product distribution could be adjusted by varying the Ni particle size.The ratio of primary to secondary amines increased from 1.0 to 2.0 upon increasing the Ni particle size from 4.5 to 18.0 nm.Further analyses reveal that the Ni particle size influenced the electronic properties of surface Ni,which in turn affected the adsorption of MEA and the reaction pathway of MEA amination.Compared to those of small Ni particles,large particles possessed a higher proportion of high-coordinated terrace Ni sites and a higher surface electron density,which favored the amination of MEA and NH3 to form EDA. 展开更多
关键词 particle size effects MONOETHANOLAMINE Amination reaction Ni-Re/SiO2 Turn over frequency
下载PDF
Effect of In_(2)O_(3)particle size on CO_(2) hydrogenation to lower olefins over bifunctional catalysts 被引量:5
3
作者 Siyu Lu Haiyan Yang +4 位作者 Zixuan Zhou Liangshu Zhong Shenggang Li Peng Gao Yuhan Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期2038-2048,共11页
A reaction-coupling strategy is often employed for CO_(2)hydrogenation to produce fuels and chemicals using oxide/zeolite bifunctional catalysts.Because the oxide components are responsible for CO_(2)activation,unders... A reaction-coupling strategy is often employed for CO_(2)hydrogenation to produce fuels and chemicals using oxide/zeolite bifunctional catalysts.Because the oxide components are responsible for CO_(2)activation,understanding the structural effects of these oxides is crucial,however,these effects still remain unclear.In this study,we combined In_(2)O_(3),with varying particle sizes,and SAPO‐34 as bifunctional catalysts for CO_(2)hydrogenation.The CO_(2)conversion and selectivity of the lower olefins increased as the average In_(2)O_(3)crystallite size decreased from 29 to 19 nm;this trend mainly due to the increasing number of oxygen vacancies responsible for CO_(2) and H_(2) activation.However,In_(2)O_(3)particles smaller than 19 nm are more prone to sintering than those with other sizes.The results suggest that 19 nm is the optimal size of In_(2)O_(3)for CO_(2)hydrogenation to lower olefins and that the oxide particle size is crucial for designing catalysts with high activity,high selectivity,and high stability. 展开更多
关键词 Carbon dioxide hydrogenation Bifunctional catalysis particle size effect Indium oxide Lower olefins
下载PDF
Effect of Ni particle size on the production of renewable methane from CO_(2) over Ni/CeO_(2) catalyst 被引量:2
4
作者 Lili Lin Clifford A.Gerlak +10 位作者 Chang Liu Jordi Llorca Siyu Yao Ning Rui Feng Zhang Zongyuan Liu Sen Zhang Kaixi Deng Christopher B.Murray José A.Rodriguez Sanjaya D.Senanayake 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期602-611,I0015,共11页
Production of’renewable Methane’has attracted renewed research interest as a fundamental probe reaction and process for CO_(2)utilization through potential use in Cl fuel production and even for future space explora... Production of’renewable Methane’has attracted renewed research interest as a fundamental probe reaction and process for CO_(2)utilization through potential use in Cl fuel production and even for future space exploration technologies.CO_(2)methanation is a structure sensitive reaction on Ni/CeO_(2)catalysts.To precisely elucidate the size effect of the Ni metal center on the CO_(2)methanation performance,we prepared2%Ni/CeO_(2)catalysts with pre-synthesized uniform Ni particles(2,4 and 8 nm)on a high surface area CeO_(2)support.Transmission electron microscopy(TEM)and ambient pressure X-ray photo spectroscopy(AP-XPS)characterization have confirmed that the catalyst structure and chemical state was uniform and stable under reaction conditions.The 8 nm sized catalyst showed superior methanation selectivity over the 4 and 2 nm counterparts,and the methanation activity in term of TOF is 10 times and 70 times higher than for the 4 and 2 nm counterparts,respectively.The DRIFTS studies revealed that the larger Ni(8 nm particles)over CeO_(2)efficiently facilitated the hydrogenation of the surface formate intermediates,which is proposed as the rate determining step accounting for the excellent CO_(2)methanation performance. 展开更多
关键词 CO_(2)methanation particle size effect Ni/CeO_(2) In situ DRIFTS Mechanism investigation
下载PDF
Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming 被引量:2
5
作者 Tomas van Haasterecht Marten Swart +1 位作者 Krijn P.de Jong Johannes Hendrik Bitter 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期287-294,共8页
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco... The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior. 展开更多
关键词 Aqueous phase reforming particle growth Catalyst stability Ostwald ripening Leaching Nickel catalysts particle size effect Support effect
下载PDF
EFFECT OF PARTICLE SIZE ON THE FILMING PROCESS OF POLYSTYRENE LATEX STUDIED BY AFM
6
作者 Xiao-zhong Qu Yi Shi +1 位作者 Liu-sheng Chen Xi-gao Jin State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期509-515,共7页
The film formation process of micro-PS particles (diameter 742 nm) and nano-PS particles (diameter 29 nm) was studied by atomic force microscopy and differential scanning calorimetry. During a step heating process, th... The film formation process of micro-PS particles (diameter 742 nm) and nano-PS particles (diameter 29 nm) was studied by atomic force microscopy and differential scanning calorimetry. During a step heating process, the particles were annealed for 0.5 h at each selected temperature. It was found that the deformation and interdiffusion temperatures of the micro-PS particles are ca. 120-130degreesC and 140-150degreesC, that of the nano-PS particles are 90degreesC and 100-110degreesC respectively. The DSC traces of nano-PS particles showed that there was an exothermic peak near T-g after annealing for 0.5 h at the selected temperatures below 90degreesC; otherwise, the exothermic peak disappeared after annealing at 100degreesC or above. Compared with the micro-PS particles, the sintering process of nano-PS particles occurs at much lower temperature determined by the confined state of polymer chains with higher conformational energy in nano-particles, and completes in a much narrower temperature range driven mainly by the larger total surface energy. 展开更多
关键词 polystyrene latex filming process particle size effect
下载PDF
Particle Size Distribution,Powder Agglomerates and Their Effects on Sinterability of Ultrafine Alumina Powders 被引量:2
7
作者 Renjie ZENG (Dept. of Materials Science, University of Xiamen, Xiamen 361005, China) B.Rand (Dept.of Materials, University of Leeds, Leeds LS2 9JT, England) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期393-396,共4页
An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has be... An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made. 展开更多
关键词 rate particle size Distribution Powder Agglomerates and Their effects on Sinterability of Ultrafine Alumina Powders AKP than
下载PDF
THE SIZE EFFECT ON THE DISPERSION OF A PARTICLE IN A HOMOGENEOUS ISOTROPIC TURBULENCE
8
作者 谢定国 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第6期587-594,共8页
The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to si:e of turbulent eddies. The particle is dragged by the viscous force of large eddie... The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to si:e of turbulent eddies. The particle is dragged by the viscous force of large eddies, and meanwhile driven randomly by small eddies. Based on this understanding, the dispersion of a particle with finite size in a homogeneous isotropic turbulence is calculated in this study. Results show that there are two competing effects: when enhanced by the inertia of a particle, the long-term particle diffusivity is reduced by the finite size of the particle. 展开更多
关键词 THE size effect ON THE DISPERSION OF A particle IN A HOMOGENEOUS ISOTROPIC TURBULENCE THAN
下载PDF
Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:A DFT study 被引量:5
9
作者 Yunpeng Guo Jie Feng Wenying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1442-1448,共7页
Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses su... Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity. 展开更多
关键词 particle size effect Ni/MgO catalyst CH4/CO2 reforming Density functional theory
下载PDF
Solid Particles Injection in Gas Turbulent Channel Flow
10
作者 Abd Elnaby Kabeel Medhat Elkelawy +1 位作者 Hagar Alm-Eldin Bastawissi Ahmed Mohammed Elbanna 《Energy and Power Engineering》 2016年第12期367-388,共22页
This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both p... This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected. 展开更多
关键词 Two-Phase Flow particle-Laden Flow Gas-Solid Channel Flow particle size effect
下载PDF
Size effect of Pt nanoparticles in acid-assisted soot oxidation in the presence of NO 被引量:1
11
作者 Shuting Luo Xiaodong Wu +4 位作者 Baofang Jin Shuang Liu Rui Ran Zhichun Si Duan Weng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第8期64-71,共8页
Pt/Al2O3 catalysts with mean Pt particle size ranged from 2.7 to 7.1 nm were synthesized by chemical reduction method,and the sulfated counterparts were prepared by impregnation of sulfuric acid.The turnover frequency... Pt/Al2O3 catalysts with mean Pt particle size ranged from 2.7 to 7.1 nm were synthesized by chemical reduction method,and the sulfated counterparts were prepared by impregnation of sulfuric acid.The turnover frequency of platinum for soot oxidation under loose contact conditions in a feed flow containing NO and O2 are positively correlated with the size of platinum.The sulfated Pt/Al2O3 exhibits higher catalytic activity for soot oxidation in the presence of NO despite their reduced ability for NO2 production.Such a contradiction is more significant for those catalysts with smaller platinum particles.Herein,the catalysts were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),transmission electron microscopy(TEM),inductive coupled plasma(ICP)emission spectrometry,CO chemisorption,thermogravimetric analysis(TGA),NH3 temperature-programmed desorption(NH 3-TPD),NO temperature-programmed oxidation(TPO)and NO x temperatureprogrammed desorption(TPD).Possible effect of Pt particle size for the catalytic oxidation of soot in the presence of NO was presented based primarily on the promoted NO2 transfer efficiency onto the soot pushed by the acidic catalysts. 展开更多
关键词 PT/AL2O3 SULFATION Soot oxidation particle size effect NO 2 transfer
原文传递
Study of Direct Determination of Trace Lanthanum in Biological Samples by ICP-AES Combined with Fluorination Electrothermal Vaporization Technique
12
作者 秦永超 江祖成 +2 位作者 蔡祥歆 张淑娴 曾云鹗 《Journal of Rare Earths》 SCIE EI CAS CSCD 1996年第1期54-58,共5页
A new method for direct determination of lanthanum in solid biological materials by fluorination electrothermal vaporization ICP-AES technique with polytetrafluoroethylene(PTFE) disperser as a fluorination agent has b... A new method for direct determination of lanthanum in solid biological materials by fluorination electrothermal vaporization ICP-AES technique with polytetrafluoroethylene(PTFE) disperser as a fluorination agent has been described. The effect of particle size on the signal intensity of La has been investigated. The vaporization behaviour of lanthanum and the main factors affecting fluorinating vaporization have been observed.Under optimum experimental conditions,the detection limit of La to this method is 2.0 ng/ml,and the RSD is 4.5%.The proposed method has been applied to determining directly trace lanthanum in solid biological standard reference materials without any chemical pretreatment,and the determined values are in good agreement with the certified ones. 展开更多
关键词 Fluorination vaporization particle size effect Biological sample LANTHANUM Inductively coupled plasma atomic emission spectroscopy
下载PDF
Experimental investigation of hydrodynamics of liquid-solid mini-fluidized beds 被引量:5
13
作者 Can Tang Mingyan Liu Yanjun Li 《Particuology》 SCIE EI CAS CSCD 2016年第4期102-109,共8页
Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured ... Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible. 展开更多
关键词 Liquid-solid fluidization Mini-fluidized bed Expansion bed Wall effect particle size distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部