To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the...There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time.In this study,the convection and radiation heat transfer losses from collector surface,the conduction heat transfer between hot and cold cylinders,and cold side heat exchanger have been considered.During this investigation,four objective functions have been optimized simultaneously,including power,efficiency,entropy,and economic factors.In addition to the fourobjective optimization,three-objective,two-objective,and single-objective optimizations have been done on the dish-Stirling model.The algorithm of multi-objective particle swarm optimization(MO P S O)with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations.In the case of multi-objective optimizations with post-expression of preferences,Pareto optimal front are obtained,afterward by implementing the fuzzy,LINMAP,and TOPSIS decision making algorithms,the single optimum results can be achieved.The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.展开更多
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
基金This research was supported by the Scientific Research Foundation of Wuhan University of Technology(No.40120237)the ESI Discipline Promotion Foundation of WUT(No.35400664).
文摘There are various analyses for a solar system with the dish-Stirling technology.One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time.In this study,the convection and radiation heat transfer losses from collector surface,the conduction heat transfer between hot and cold cylinders,and cold side heat exchanger have been considered.During this investigation,four objective functions have been optimized simultaneously,including power,efficiency,entropy,and economic factors.In addition to the fourobjective optimization,three-objective,two-objective,and single-objective optimizations have been done on the dish-Stirling model.The algorithm of multi-objective particle swarm optimization(MO P S O)with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations.In the case of multi-objective optimizations with post-expression of preferences,Pareto optimal front are obtained,afterward by implementing the fuzzy,LINMAP,and TOPSIS decision making algorithms,the single optimum results can be achieved.The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.