期刊文献+
共找到2,426篇文章
< 1 2 122 >
每页显示 20 50 100
Modeling and Simulation of an Organic Photovoltaic Cell: ITO/MoO3/CARAPA/PCBM/Alq3/Al with SCAPS
1
作者 Donafologo Soro Adama Sylla +5 位作者 Aboudramane Gbané Bamba Abdoulaye Franck Julia Mari Guaita Amal Bouich Siaka Toure Bernabé Marí 《Modeling and Numerical Simulation of Material Science》 2024年第3期79-96,共18页
Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials us... Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials used and their implementation principles. However, the cost-efficiency ratio remains a significant challenge for researchers. Currently, organic materials are gaining popularity due to their relatively low cost. However, their performance, particularly in terms of conversion efficiency, still requires improvements. This study focuses on optimizing the organic photovoltaic cell ITO/MoO3/CARAPA/PCBM/Alq3/Al using SCAPS. Several parameters were considered, such as layer thickness, recombination center density, and doping, to improve the cell’s performance. The optimal parameters obtained include an efficiency of 3%, a fill factor of 81.67%, an open-circuit voltage of 1610 mV, and a short-circuit current of 2.28 mA/cm2. The study also revealed that doping the phenyl-C61-butyric acid methyl ester (PCBM) layer has a significant impact on efficiency and short-circuit current, improving these parameters up to a certain point before causing degradation due to increased recombination. Furthermore, high doping of the tri (8-hydroxyquinoline) aluminum (Alq3) layer improves performance up to a critical threshold, after which degradation is also observed. In contrast, doping the molybdenum trioxide (MoO3) layer does not have a notable impact on cell performance. Regarding the thickness of the active Carapaprocera (CARAPA) and PCBM layers, non-optimal values lead to a decrease in performance. Similarly, an optimal thickness of the Alq3 layer significantly improves efficiency. These results highlight the importance of parameter optimization to maximize the efficiency of organic solar cells. 展开更多
关键词 Renewable Energie Solar cells simulation Organic Materials PERFORMANCE
下载PDF
Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions
2
作者 Yuxue Mu Ning Zhang +7 位作者 Dongyu Wei Guoqing Yang Lilingxuan Yao Xinyue Xu Yang Li Junhui Xue Zuoming Zhang Tao Chen 《Neural Regeneration Research》 SCIE CAS 2025年第7期2116-2128,共13页
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ... A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness. 展开更多
关键词 glial fibrous acidic protein GLIOSIS Müller cells nerve growth factor neural differentiation neurodegeneration proteomic retinal degeneration retinal outer nuclear layer simulated weightlessness
下载PDF
Performance Improvement of CIGS Solar Cell: A Simulation Approach by SCAPS-1D
3
作者 Md. Ferdous Wahid Md. Nuralam Howlader +1 位作者 Nazmul Ahasan Md. Mizanur Rahman 《Energy and Power Engineering》 2023年第8期291-306,共16页
Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, ... Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, copper indium gallium selenide (CIGS)-based ultra-thin solar cell (SC) configuration (Ag/ZnO/ZnSe/CIGS/Si/Ni) has been designed and examined using SCAPS-1D. The numerical calculations revealed that this new design resulted in a substantial improvement in SC performance. This study explores the utilization of two absorber layers, CIGS and Si, both with a total of 2 μm thickness, to enhance device performance while reducing material costs, observing an increase in key SC parameters as the Si absorber layer thickness is increased, reaching a maximum efficiency of 29.13% when CIGS and Si thicknesses are set at 0.4 μm and 1.6 μm, respectively with doping absorber doping density of 10<sup>14</sup> cm<sup>-3</sup>. Furthermore, we analyze the impact of variation in absorber and buffer layer thickness, as well as doping concentration, surface recombination velocity (SRV), electron affinity, series-shunt resistance, and temperature, on optimized CIGS SC parameters such as short-circuit current density (J<sub>SC</sub>), open circuit voltage (V<sub>OC</sub>), fill factor (FF), and power conversion efficiency (PCE). The findings yielded by the investigation offer significant elucidation regarding the fabrication of economically viable and highly efficient non-hazardous CIGS ultra-thin SC. 展开更多
关键词 Thin-Flim CIGS-Based Solar cell Non-Toxic Solar cell SCAPS-1D Numerical simulation Renewable Energy
下载PDF
On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation: Benchmark and application to the radio frequency discharges 被引量:2
4
作者 王虹宇 姜巍 +1 位作者 孙鹏 孔令宝 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期418-426,共9页
We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron dist... We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron distributing functions obtained by one-dimensional (1D) simulation are analyzed. Both explicit and implicit algorithms are checked. The results showed that the EC scheme can eliminated the self-heating with wide grid spacing in both cases with a small reduction of the accuracies. In typical parameters, the EC implicit scheme has higher precision than EC explicit scheme. Some "numerical cooling" behaviors are observed and analyzed. Some other errors are also analyzed. The analysis showed that the EC implicit scheme can be used to qualitative estimation of some discharge problems with much less computational resource cost without much loss of accuracies. 展开更多
关键词 particle-in-cell/Monte Carlo simulation energy conservation grid heating discharging simulation
下载PDF
Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma:Algorithms and application in gas-inductive breakdown 被引量:1
5
作者 王虹宇 孙鹏 +2 位作者 姜巍 周杰 谢柏松 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期433-439,共7页
An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorit... An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorithm (DIPIC) and energy conservation scheme are applied together and the grid heating can be eliminated in most cases. A tensor-susceptibility Poisson equation is constructed. Its discrete form is made up by a hybrid scheme in one-dimensional (1D) and two- dimensional (2D) cylindrical systems. A semi-coarsening multigrid method is used to solve the discrete system. The algorithm is applied to simulate the cylindrical magnetized target fusion (MTF) pre-ionization process and get qualitatively correct results. The potential application of the algorithm is discussed briefly. 展开更多
关键词 particle-in-cell/Monte Carlo implicit simulation discharging simulation
下载PDF
Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability 被引量:1
6
作者 吴明雨 陆全明 +2 位作者 朱洁 王沛然 王水 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第1期17-24,共8页
Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. Th... Previous electrostatic particle-in-cell (PIC) simulations have pointed out that elec- tron phase-space holes (electron holes) can be formed during the nonlinear evolution of the electron two-stream instability. The parallel cuts of the parallel and perpendicular electric field have bipolar and unipolar structures in these electron holes, respectively. In this study, two-dimensional (2D) electromagnetic PIC simulations are performed in the x - y plane to investigate the evolution of the electron two-stream instability, with the emphasis on the magnetic structures associated with these electron holes in different plasma conditions. In the simulations, the background magnetic field (Bo = Boer) is along the x direction. In weakly magnetized plasma (Ωe 〈ωpe, where Ωe and ωpe are the electron gyrofrequency and electron plasma frequency, respectively), several 2D electron holes are formed. In these 2D electron holes, the parallel cut of the fluctuating magnetic field δBx and δBz has unipolar structures, while the fluctuating magnetic field δBy has bipolar structures. In strongly magnetized plasma (Ωe 〉 ωpe), several quasi-lD electron holes are formed. The electrostatic whistler waves with streaked structures of Ey are excited. The fluctuating mag- netic field δBx and δBz also have streaked structures. The fluctuating magnetic field δBx and δBy are produced by the current in the z direction due to the electric field drift of the trapped elec- trons, while the fluctuating magnetic field δBz can be explained by the Lorentz transformation of a moving quasielectrostatic structure. The influences of the initial temperature anisotropy on the magnetic structures of the electron holes are also analyzed. The electromagnetic whistler waves are found to be excited in weakly magnetized plasma. However, they do not have any significant effects on the electrostatic structures of the electron holes. 展开更多
关键词 electron two-stream instability particle-in-cell simulation
下载PDF
Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster 被引量:1
7
作者 Hong LI Xingyu LIU +4 位作者 Zhiyong GAO Yongjie DING Liqiu WEI Daren YU Xiaogang WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期96-106,共11页
Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode tem... Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency. 展开更多
关键词 Hall effect thruster anode temperature neutral flow discharge characteristics particle-in-cell simulation
下载PDF
Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations
8
作者 Quanming LU Huayue CHEN +1 位作者 Yangguang KE Shui WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第5期93-101,共9页
By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam... By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region. 展开更多
关键词 electron acoustic waves cold ELECTRONS TRAPPING particle-in-cell(PIC)simulation
下载PDF
Analysis of microwave propagation in a time-varying plasma slab with particle-in-cell simulations
9
作者 Kun CHEN Chao CHANG +2 位作者 Yongdong LI Hongguang WANG Chunliang LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第10期47-53,共7页
Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiat... Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiation to an arbitrary larger frequency radiation. The energy conversion is also obtained by the theoretical analysis and has been testified by PIC simulation. The source wave was propagating in a parallel plate waveguide locally filled with the ionized gas. In this paper we would discuss the effects of the rise time, the plasma length, the switching time and the collision frequency on the energy conversion, and the methods to improve the upshift wave energy are proposed. We also put forward the new concept of the critical values of the rise time and the source wave amplitude to provide a theoretical basis for the selection of parameters in the experiments. 展开更多
关键词 continuous MICROWAVE TIME-VARYING plasma frequency UP-CONVERSION particle-incell (PIC) simulation
下载PDF
Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges
10
作者 Weili FAN Zhengming SHENG Fucheng LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期6-11,共6页
The plasma behavior of filamentary barrier discharges in helium is simulated using a twodimensional(2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of th... The plasma behavior of filamentary barrier discharges in helium is simulated using a twodimensional(2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of the discharge: the Townsend phase; the space-charge dominated phase; the formation of the cathode layer, and the extinguishing phase. The spatialtemporal evolution of the particle densities, velocities of the charged particles, electric fields, and surface charges has been demonstrated. Our simulation provides insights into the underlying mechanism of the discharge and explains many dynamical behaviors of dielectric barrier discharge(DBD) filaments. 展开更多
关键词 dielectric barrier discharge filamentary discharge particle-in-cell/Monte Carlo simulation
下载PDF
Optimization of operating conditions and structure parameters of zinc electrolytic cell based on numerical simulation for electrolyte flow 被引量:4
11
作者 李昊岚 胡杰 +2 位作者 周萍 魏文武 苏寅彪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1604-1609,共6页
The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two... The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two circulations at the surface flow where part of electrolyte backflows to the inlet from the side of cell, and the rest flows directly to the outlet, and the separation of two circulations with opposite direction occurs at the 20th pair of anode-cathode. This phenomenon was observed in the real operation. The electrolyte flows into the space between anode and cathode from the side portion of the cell. Meanwhile, the interelectrode effective flow rate (IEFR) is put forward to describe quantitively the flow field characteristics and is defined as the ratio of electrolyte flow between the anode and cathode to the total flow area. The influences of structure parameters and operating conditions on IEFR, such as the inlet angle, the volumetric flow rate, the inlet position and the height of steel baffles were simulated. The inlet position has a significant influence on the IEFR and its optimal value is 0.9 m below free surface. The inlet angle should be in the range from -10° to 10°. IEFR is in linear proportion with the volumetric flow rate, and the height of the steel baffle has little influence on the flow field. 展开更多
关键词 zinc electrolytic cell flow field OPTIMIZATION numerical simulation
下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
12
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
下载PDF
Device simulation of lead-free CH_3NH_3SnI_3 perovskite solar cells with high efficiency 被引量:5
13
作者 杜会静 王韦超 朱键卓 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期554-561,共8页
The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap... The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell. 展开更多
关键词 CH_3NH_3SnI_3 perovskite solar cells device simulation high efficiency
下载PDF
Numerical Simulation of Viscous Flow Through Spherical Particle Assemblage with the Modified Cell Model 被引量:9
14
作者 毛在砂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期149-162,共14页
The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swar... The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle. 展开更多
关键词 cell model numerical simulation particle assemblage boundary condition
下载PDF
Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells 被引量:6
15
作者 周乃君 夏小霞 王富强 《Journal of Central South University of Technology》 EI 2007年第1期42-46,共5页
Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The... Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow. 展开更多
关键词 drained aluminum reduction cells ELECTROLYTE two-phase flow numerical simulation
下载PDF
Numerical simulation of coupled thermo-electrical field for 20 kA new rare earth reduction cell 被引量:5
16
作者 Xiao-jun Lü Heng-xing ZHANG +5 位作者 Ze-xun HAN Kang-jie WANG Chao-hong GUAN Qi-dong SUN Wei-wei WANG Min-ren WEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期1124-1134,共11页
To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cath... To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC. 展开更多
关键词 rare earth reduction cell anode-cathode distance electrolyte height thermo-electrical field numerical simulation
下载PDF
Numerical simulation of busbar configuration in large aluminum electrolysis cell 被引量:4
17
作者 李茂 周孑民 《Journal of Central South University of Technology》 EI 2008年第2期271-275,共5页
Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,numbe... Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable. 展开更多
关键词 numerical simulation aluminum electrolysis cell busbar configuration MAGNETOHYDRODYNAMIC
下载PDF
Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 被引量:1
18
作者 姜帅 贾锐 +4 位作者 陶科 侯彩霞 孙恒超 于志泳 李勇滔 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期481-490,共10页
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys... Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. 展开更多
关键词 polycrystalline silicon SIO2 solar cell PASSIVATION simulation IBC
下载PDF
Numerical simulation of a triple-junction thin-film solar cell based on μc-Si_(1-x)Ge_x :H 被引量:3
19
作者 黄振华 张建军 +5 位作者 倪牮 曹宇 胡子阳 李超 耿新华 赵颖 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期680-685,共6页
In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination... In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory. 展开更多
关键词 a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell simulation analyses of microelectronic andphotonic structures (AMPS-1D)
下载PDF
Effects of simulated zero gravity on adhesion,cell structure,proliferation,and growth behavior,in glioblastoma multiforme
20
作者 Saifaldeen Altaie Amera Alrawi 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第4期22-29,共8页
All life on Earth has evolved under the influence of continuous gravity,and methods have been developed to balance this influence with the biological evolution of organisms at the cellular and system levels.However,wh... All life on Earth has evolved under the influence of continuous gravity,and methods have been developed to balance this influence with the biological evolution of organisms at the cellular and system levels.However,when exposed to zero gravity in space,the balance between cell structure and external forces is destroyed,resulting in changes at the cellular level(e.g.,cell morphology,adhesion,viability,apoptosis,etc.),and understanding the molecular mechanism of cell response to zero gravity will help to cope with diseases that rely on mechanical response.Therefore,biological research in space and zero gravity is a unique step in developing the best anti-cancer treatments,which is a great challenge to humanity.In this study,multicellular glioma cancer cells from a brain tumor in a 72-year-old Iraqi patient were subjected to simulated zero gravity for 24 h,and the results showed that most of the cells lost their adhesion,which is considered to be the first step toward cell apoptosis.In addition to the formation of multicellular spheroids,the results also showed that the inhibition rate for cell death was 32%in comparison to the control cells.Moreover,the cells showed a clear change in their cellular morphology and growth behavior.These results give new hope for fighting cancer distinctively,and such a treatment method has no side effects in comparison to traditional chemical and radiological ones. 展开更多
关键词 3D cell culture Space biology GLIOBLASTOMA simulated microgravity Cancer biology
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部