Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driv...Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driving.To determine the characteristics of the movement of the metal particle flow,a series of aluminium plates were designed to be the targets on which the metal particle flow impacted.The test result was presented and a numerical model was set up to analyze the impact of the high speed inert metal particles on aluminium plate.Based on the numerical analysis,the relationship between the characteristic of the mark on the target plate and the initial condition of the inert metal particles was pro-posed.From the analysis of the impact on target plates,more information about the movement of the metal particles could be reconstructed.展开更多
In this work,by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor,a hexahedral structured grid was used to discretize the model.Combined with realizable k–εmodel,e...In this work,by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor,a hexahedral structured grid was used to discretize the model.Combined with realizable k–εmodel,eddy-dissipation-concept,discrete-ordinate radiation model,hydrogen 19-step detailed reaction mechanism,air age user-defined-function,velocity field,temperature field,concentration field and gas arrival time in the reactor were numerically simulated.The Euler–Lagrange method combined with the discrete-phase-model was used to reveal the flow characteristics of particles in the reactor,and based on this,the effects of the reactor aspect ratios,central jet gas velocity and particle size on the flow field characteristics and particle back-mixing degree in the reactor were investigated.The results show that with the decrease of aspect ratio in the combustion reactors,the velocity and temperature attenuation in the reactor are intensified,the vortex phenomenon is aggravated,and the residence time distribution of nanoparticles is more dispersed.With the increase in the central jet gas velocities in reactors,the vortex lengthens along the axis,the turbulence intensity increases,and the residence time of particles decreases.The back-mixing degree and residence time of particles in the reactor also decrease with the increase in particle size.The simulation results can provide reference for the structural regulation of nanoparticles and the structural design of combustion reactor in the process of gas combustion synthesis.展开更多
This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weather...This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weathering on limestone using the freezing and thawing(F-T)for 40 cycles.The mechanical parameters of the samples were measured at the end of the 40th cycle.In the second configuration,a series of specimens underwent salt crystallization(S-C)tests for 20 cycles.Experimental results were validated using discrete element method(DEM).Next,the weathered limestone model with dimensions of 108 mm54 mm were prepared.The weathering layers were tested at four different thicknesses(i.e.2.5 mm,5 mm,7.5 mm,and 10 mm)and three different positions(at the surface,5 mm under the rock surface,and 10 mm under the rock surface).According to the results,weathering depth and thickness have a considerable effect on the failure process.The results also showed a correlation between the values of compressive strength and failure mechanisms associated with the weathering layer.The numerical results revealed that the tension crack was the dominant factor.Additionally,with increasing weathering thickness,Young's modulus,crack initiation stress,and final strength decreased in constant weathering depth.The results also demonstrated that the failure progress of the numerical models was similar to that observed in the laboratory.展开更多
The elliptic flow v2, for π±, K±, p and p in Au+Au collisions at center-of-mass energies √sNN=7.7, 11.5, 14.5 and 19.6 GeV, is analyzed using a multiphase transport model. A significant difference in the ...The elliptic flow v2, for π±, K±, p and p in Au+Au collisions at center-of-mass energies √sNN=7.7, 11.5, 14.5 and 19.6 GeV, is analyzed using a multiphase transport model. A significant difference in the v2 values for p and p is observed, and the values of v2 splitting are larger compared with π+ and π-, K+ and K-. The difference increases with decreasing the center-of-mass energy. The effect of the quark coalescence mechanism in a multi-phase transport model to the value of elliptic difference △v2 between p and p- has been discussed. The simulation of Au+Au collisions at 14.5 GeV shows that the effect of hadron cascade to △v2 is not obvious, and a larger patton-scattering cross section can lead to a larger △v2.展开更多
This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fis...This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.展开更多
Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rain...Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rainfall.The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations.Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed,which help us to discuss the mechanism of deformation and failure of this landslide together with field observations.It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II.In order to prevent the potential disaster,a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II.Verified by field observations,the presented landslide model can reflect the failure mechanism after rainfall.It can also provide a method to predict the potential disaster and draft disaster prevention measures.展开更多
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass...Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.展开更多
Polyurethane polymer grouting materials were studied with conventional triaxial tests via the particle flow code in two dimensions(PFC^(2D)) method, and the simulation results agreed with the experimental data. Th...Polyurethane polymer grouting materials were studied with conventional triaxial tests via the particle flow code in two dimensions(PFC^(2D)) method, and the simulation results agreed with the experimental data. The particle flow code method can simulate the mechanical properties of the polymer. The triaxial cyclic loading tests of the polymer material under different confining pressures were carried out via PFC^(2D) to analyze its mechanical performance. The PFC^(2D) simulation results show that the value of the elastic modulus of the polymer decreases slowly at first and fluctuated within a narrow range near the value of the peak strength; the cumulative plastic strain increases slowly at first and then increases rapidly; the peak strength and elastic modulus of polymer increase with the confining pressure; the PFC^(2D) method can be used to quantitatively evaluate the damage behavior of the polymer material and estimate the fatigue life of the materials under fatigue load based on the number and the location of micro-cracks. Thus, the PFC^(2D) method is an effective tool to study polymers.展开更多
Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the...Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the development process were investigated.On the basis of the scanning electron microscopy(SEM)and mechanical test results of CPB,the particle size information of CPB was extracted,and a two-dimensional particle flow code(PFC)model of CPB was established to analyze the evolution rule of mesoscopic parameters during CPB development.The embedded FISH language in PFC was used to develop a program for establishing a PFC model on the basis of the SEM results.The mesoscopic parameters of CPB samples at different curing times,such as coordination number(C_(n)),contact force chain,and rose diagram,were obtained by recording and loading and used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development.It is of considerable significance to establish the physical model of CPB using the PFC to reveal the mesoscopic structure of CPB.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is dev...Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.展开更多
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carr...Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.展开更多
Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.B...Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.展开更多
We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 167...We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 1675, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e., Re ≈1775. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic, Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow.展开更多
Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a...Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a mixture of gaseous phase(air) and suspended solid and liquid particulate matters(PMs).An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators(ESPs),which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it.Electrical discharges in multi-phase environments,the knowledge of which is scarce,are becoming an attractive research subject,offering a wide variety of possible discharges and multi-phase environments to be studied.This paper is an introduction to electrical discharges in multi-phase environments.It is focused on DC negative coronas and accompanying electrohydrodynamic(EHD) flows in a gaseous two-phase fluid formed by air(a gaseous phase) and solid PM(a solid phase),run under laboratory conditions.The introduction is based on a review of the relevant literature.Two cases will be considered:the first case is of a gaseous two-phase fluid,initially motionless in a closed chamber before being subjected to a negative corona(with the needle-toplate electrode arrangement),which afterwards induces an EHD flow in the chamber,and the second,of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes.This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids,and for engineers who work on designing EHD devices(such as ESPs,EHD pumps,and smoke detectors).展开更多
An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time me...An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time mean pressure and time series of pressure fluctua- tions were measured at different axial positions in the dipleg with particle mass fluxes ranging from 50.0 to 385.0 kg m-2s t. The experimental results showed that the time mean pressure in the dipleg increased progres- sively from the top section to the bottom section. The experimental phenomena displayed that the fluidization patterns in the dipleg can be divided into two types on the whole, namely the dilute-dense coexisting falling flow and the dense conveying flow along the dipleg. In the dilute- dense coexisting falling flow, the dilute phase region was composed of a length of swirling flow below the inlet of dipleg and a dilute falling flow above the dense bed level. With increasing particle mass flux, the dilute-dense coex- isting falling flow was gradually transformed to be the dense conveying flow, and the exit pressure of the dipleg increased considerably. The pressure fluctuations were closely related to the flnidization patterns inside the dipleg. In the dilute-dense coexisting falling flow, the pressure fluctuations in the dilute flow region originated from par- ticle clusters, propagating downward as a pressure wave; however, the pressure fluctuations in the dense flow region originated from rising gas bubbles, propagating upward. When the dense conveying flow was formed in the dipleg,the pressure fluctuations originated mainly from instability of the feed and the compressed gas, propagating down- ward. The standard deviation of the pressure fluctuations indicated that the intensity of pressure fluctuations first increased and then decreased with increasing particle flux.展开更多
To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral e...To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral element method (SEM) was employed to simulate the gas flow field and a Lagrangian approach was used to compute the particles movement. Numerical results showed that at the same Stokes numbers, particles would be greatly impacted by the development of the coherent structure. But with different Stokes numbers, it can be seen that the large-scale vortex structures would influence the particle flow differently. While under different Reynolds numbers (150 and 200), there are no great changes in the particle laden flow.展开更多
For any study ofa suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential, 'This paper for the first lime presents appr...For any study ofa suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential, 'This paper for the first lime presents approximate analytical expressions (in closed form) of all the twelve force and moment coefficienis for a sphere outsied a circular orifice, on the basis of a number of discrete data computed by Yan et al(1987).These coefficients are then applied to calculate the trajectory and angular velocity of a spherical particle approaching the pore at zero Reynolds number. The trajectory is in excellent agreement with the available experimental results. An analysis of the relative importance of the coefficients shows that the rotation effect cannot be neglected near the pore opening or near the wall, and that the lateral force effect must be taken into account in the neighborhood of the edge of the pore opening. It is due to neglecting these factors that previous theoretical results deviate from the experimental ones near the pore opening. The effects of the ratio of the particle to pore radii as well as the influences of the graritytbuoyance on the particle trajectory, velocity distribution and rotation are discnssed in detail. It is pointed out that in the experiments of neutrally-buoyant suspensions, the restriction on the density of the particle is most demanding for a large particle size.The expressions of forces and moments presenled herein are complete, relatively accurate and convenient, thus providing a good prerequisite for further studies of any problems involving the entrance of particles to a pare.展开更多
The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d...The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.展开更多
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine ...The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.展开更多
基金Supported by National Natural Science Foundation of China (No.10772032).
文摘Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driving.To determine the characteristics of the movement of the metal particle flow,a series of aluminium plates were designed to be the targets on which the metal particle flow impacted.The test result was presented and a numerical model was set up to analyze the impact of the high speed inert metal particles on aluminium plate.Based on the numerical analysis,the relationship between the characteristic of the mark on the target plate and the initial condition of the inert metal particles was pro-posed.From the analysis of the impact on target plates,more information about the movement of the metal particles could be reconstructed.
基金supported by the National Natural Science Foundation of China(21978088,91534202,51673063)Shanghai Technology Research Leader(20XD1433600)+4 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutes of High Learningthe Basic Research Program of Shanghai(17JC1402300)the Shanghai City Board of education research and innovation projectthe Fundamental Research Funds for the Central Universities(222201718002)provided by Feringa Nobel Prize Scientist Joint Research Center。
文摘In this work,by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor,a hexahedral structured grid was used to discretize the model.Combined with realizable k–εmodel,eddy-dissipation-concept,discrete-ordinate radiation model,hydrogen 19-step detailed reaction mechanism,air age user-defined-function,velocity field,temperature field,concentration field and gas arrival time in the reactor were numerically simulated.The Euler–Lagrange method combined with the discrete-phase-model was used to reveal the flow characteristics of particles in the reactor,and based on this,the effects of the reactor aspect ratios,central jet gas velocity and particle size on the flow field characteristics and particle back-mixing degree in the reactor were investigated.The results show that with the decrease of aspect ratio in the combustion reactors,the velocity and temperature attenuation in the reactor are intensified,the vortex phenomenon is aggravated,and the residence time distribution of nanoparticles is more dispersed.With the increase in the central jet gas velocities in reactors,the vortex lengthens along the axis,the turbulence intensity increases,and the residence time of particles decreases.The back-mixing degree and residence time of particles in the reactor also decrease with the increase in particle size.The simulation results can provide reference for the structural regulation of nanoparticles and the structural design of combustion reactor in the process of gas combustion synthesis.
文摘This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weathering on limestone using the freezing and thawing(F-T)for 40 cycles.The mechanical parameters of the samples were measured at the end of the 40th cycle.In the second configuration,a series of specimens underwent salt crystallization(S-C)tests for 20 cycles.Experimental results were validated using discrete element method(DEM).Next,the weathered limestone model with dimensions of 108 mm54 mm were prepared.The weathering layers were tested at four different thicknesses(i.e.2.5 mm,5 mm,7.5 mm,and 10 mm)and three different positions(at the surface,5 mm under the rock surface,and 10 mm under the rock surface).According to the results,weathering depth and thickness have a considerable effect on the failure process.The results also showed a correlation between the values of compressive strength and failure mechanisms associated with the weathering layer.The numerical results revealed that the tension crack was the dominant factor.Additionally,with increasing weathering thickness,Young's modulus,crack initiation stress,and final strength decreased in constant weathering depth.The results also demonstrated that the failure progress of the numerical models was similar to that observed in the laboratory.
基金Supported by the National Natural Science Foundation of China under Grant No U1332125the Program for Innovation Research of Science in Harbin Institute of Technology under Grant No B201408
文摘The elliptic flow v2, for π±, K±, p and p in Au+Au collisions at center-of-mass energies √sNN=7.7, 11.5, 14.5 and 19.6 GeV, is analyzed using a multiphase transport model. A significant difference in the v2 values for p and p is observed, and the values of v2 splitting are larger compared with π+ and π-, K+ and K-. The difference increases with decreasing the center-of-mass energy. The effect of the quark coalescence mechanism in a multi-phase transport model to the value of elliptic difference △v2 between p and p- has been discussed. The simulation of Au+Au collisions at 14.5 GeV shows that the effect of hadron cascade to △v2 is not obvious, and a larger patton-scattering cross section can lead to a larger △v2.
基金The University of Vigo is acknowledged for financing part of the first author’s PhD studiesthe Spanish Ministry of Economy and Competitiveness for funding of the project‘Deepening on the behaviour of rock masses:Scale effects on the stressestrain response of fissured rock samples with particular emphasis on post-failure’,awarded under Contract Reference No.RTI2018-093563-B-I00partially financed by means of European Regional Development Funds from the European Union(EU)。
文摘This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.
基金The National Natural Science Foundation of China(Grants Nos.51309089,41472272 and 11202063)the National Key Technology R&D Program(Grant No.2013BAB06B00)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20130846)the Fundamental Research Funds for the Central Universities(Grant No.2015B06014)supported this work
文摘Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rainfall.The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations.Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed,which help us to discuss the mechanism of deformation and failure of this landslide together with field observations.It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II.In order to prevent the potential disaster,a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II.Verified by field observations,the presented landslide model can reflect the failure mechanism after rainfall.It can also provide a method to predict the potential disaster and draft disaster prevention measures.
基金Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China Project(2015XKZD05) supported by the Fundamental Research Funds for the Central Universities, China
文摘Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.
基金the National Key R&D Program of China(No.2017YFC0405002)
文摘Polyurethane polymer grouting materials were studied with conventional triaxial tests via the particle flow code in two dimensions(PFC^(2D)) method, and the simulation results agreed with the experimental data. The particle flow code method can simulate the mechanical properties of the polymer. The triaxial cyclic loading tests of the polymer material under different confining pressures were carried out via PFC^(2D) to analyze its mechanical performance. The PFC^(2D) simulation results show that the value of the elastic modulus of the polymer decreases slowly at first and fluctuated within a narrow range near the value of the peak strength; the cumulative plastic strain increases slowly at first and then increases rapidly; the peak strength and elastic modulus of polymer increase with the confining pressure; the PFC^(2D) method can be used to quantitatively evaluate the damage behavior of the polymer material and estimate the fatigue life of the materials under fatigue load based on the number and the location of micro-cracks. Thus, the PFC^(2D) method is an effective tool to study polymers.
基金financially supported by the National Natural Science Foundation of China(Nos.51874229,52074212,51674188,51504182,51404191,and 51405381)the Natural Science Basic Research Plan of Shaanxi Province of China(Nos.2015JQ5187,2018JQ5183,and 2018JM5161)+3 种基金the Scientific Research Program funded by the Shaanxi Education Department(No.15JK1466)the China Postdoctoral Science Foundation(No.2015M582685)the Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2018YQ2-01)supported by the National Research Council of Science&and Technology(NST)grant by the Korea Korean government(MSIP)(No.CRC-16-38502-KICT)。
文摘Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the development process were investigated.On the basis of the scanning electron microscopy(SEM)and mechanical test results of CPB,the particle size information of CPB was extracted,and a two-dimensional particle flow code(PFC)model of CPB was established to analyze the evolution rule of mesoscopic parameters during CPB development.The embedded FISH language in PFC was used to develop a program for establishing a PFC model on the basis of the SEM results.The mesoscopic parameters of CPB samples at different curing times,such as coordination number(C_(n)),contact force chain,and rose diagram,were obtained by recording and loading and used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development.It is of considerable significance to establish the physical model of CPB using the PFC to reveal the mesoscopic structure of CPB.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
基金Supported by the National Natural Science Foundation of China(50979030 and 50911130366)
文摘Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.
基金The project supported by the National Natural Science Foundation of China(50606026 and 50736006)
文摘Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.11002021)the Doctoral Subject Foundation of the Ministry of Education of China(No.20070008012)the National High Technology Research and Development Program(No.2008AA062104)
文摘Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.
基金supported by the European Research Council Grant No.ERC-2013-CoG-616186,TRITOSthe Swedish Research Council(VR)
文摘We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 1675, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e., Re ≈1775. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic, Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow.
基金supported by the National Science Centre(Grant No.UMO-2013/09/B/ST8/02054)
文摘Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a mixture of gaseous phase(air) and suspended solid and liquid particulate matters(PMs).An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators(ESPs),which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it.Electrical discharges in multi-phase environments,the knowledge of which is scarce,are becoming an attractive research subject,offering a wide variety of possible discharges and multi-phase environments to be studied.This paper is an introduction to electrical discharges in multi-phase environments.It is focused on DC negative coronas and accompanying electrohydrodynamic(EHD) flows in a gaseous two-phase fluid formed by air(a gaseous phase) and solid PM(a solid phase),run under laboratory conditions.The introduction is based on a review of the relevant literature.Two cases will be considered:the first case is of a gaseous two-phase fluid,initially motionless in a closed chamber before being subjected to a negative corona(with the needle-toplate electrode arrangement),which afterwards induces an EHD flow in the chamber,and the second,of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes.This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids,and for engineers who work on designing EHD devices(such as ESPs,EHD pumps,and smoke detectors).
基金the support from the National Natural Science Foundation of China(Grant No.21176250.21566038)by the Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0301)
文摘An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time mean pressure and time series of pressure fluctua- tions were measured at different axial positions in the dipleg with particle mass fluxes ranging from 50.0 to 385.0 kg m-2s t. The experimental results showed that the time mean pressure in the dipleg increased progres- sively from the top section to the bottom section. The experimental phenomena displayed that the fluidization patterns in the dipleg can be divided into two types on the whole, namely the dilute-dense coexisting falling flow and the dense conveying flow along the dipleg. In the dilute- dense coexisting falling flow, the dilute phase region was composed of a length of swirling flow below the inlet of dipleg and a dilute falling flow above the dense bed level. With increasing particle mass flux, the dilute-dense coex- isting falling flow was gradually transformed to be the dense conveying flow, and the exit pressure of the dipleg increased considerably. The pressure fluctuations were closely related to the flnidization patterns inside the dipleg. In the dilute-dense coexisting falling flow, the pressure fluctuations in the dilute flow region originated from par- ticle clusters, propagating downward as a pressure wave; however, the pressure fluctuations in the dense flow region originated from rising gas bubbles, propagating upward. When the dense conveying flow was formed in the dipleg,the pressure fluctuations originated mainly from instability of the feed and the compressed gas, propagating down- ward. The standard deviation of the pressure fluctuations indicated that the intensity of pressure fluctuations first increased and then decreased with increasing particle flux.
文摘To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral element method (SEM) was employed to simulate the gas flow field and a Lagrangian approach was used to compute the particles movement. Numerical results showed that at the same Stokes numbers, particles would be greatly impacted by the development of the coherent structure. But with different Stokes numbers, it can be seen that the large-scale vortex structures would influence the particle flow differently. While under different Reynolds numbers (150 and 200), there are no great changes in the particle laden flow.
基金Project supported by the National Natural Science Foundation of China
文摘For any study ofa suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential, 'This paper for the first lime presents approximate analytical expressions (in closed form) of all the twelve force and moment coefficienis for a sphere outsied a circular orifice, on the basis of a number of discrete data computed by Yan et al(1987).These coefficients are then applied to calculate the trajectory and angular velocity of a spherical particle approaching the pore at zero Reynolds number. The trajectory is in excellent agreement with the available experimental results. An analysis of the relative importance of the coefficients shows that the rotation effect cannot be neglected near the pore opening or near the wall, and that the lateral force effect must be taken into account in the neighborhood of the edge of the pore opening. It is due to neglecting these factors that previous theoretical results deviate from the experimental ones near the pore opening. The effects of the ratio of the particle to pore radii as well as the influences of the graritytbuoyance on the particle trajectory, velocity distribution and rotation are discnssed in detail. It is pointed out that in the experiments of neutrally-buoyant suspensions, the restriction on the density of the particle is most demanding for a large particle size.The expressions of forces and moments presenled herein are complete, relatively accurate and convenient, thus providing a good prerequisite for further studies of any problems involving the entrance of particles to a pare.
文摘The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.
基金Supported by the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia(Research University Grant Tier-1,Grant No.06H29)Ministry of Science,Technology and Innovation(MOSTI)Malaysia(Grant No.03-01-06-KHAS01)
文摘The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.