Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent sus...Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (Xfd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R^2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents ofPb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution.展开更多
This study assessed the effectiveness of three novel control technologies for particulate matter(PM) and volatile organic compound(VOC) removal from commercial meat cooking operations. All experiments were conduct...This study assessed the effectiveness of three novel control technologies for particulate matter(PM) and volatile organic compound(VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside's commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District(SCAQMD) Method 5.1, as well as a dilution tunnel-based PM method showed statistically significantly reductions for each control technology when compared to baseline testing(i.e., without a catalyst). Overall, particle number emissions decreased with the use of control technologies, with the exception of control technology 2(CT2), which is a grease removal technology based on boundary layer momentum transfer(BLMT) theory. Particle size distributions were unimodal with CT2 resulting in higher particle number populations at lower particle diameters. Organic carbon was the dominant PM component( 99%) for all experiments. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds and showed reductions with the application of the control technologies. Some reductions in mono-aromatic VOCs were also observed with CT2 and the electrostatic precipitator(ESP) CT3 compared to the baseline testing.展开更多
Gas turbine particulate matter(PM) emissions contribute to air quality degradation and are dangerous to both human health and the environment. Currently, PM mass concentrations determined from gravimetric measuremen...Gas turbine particulate matter(PM) emissions contribute to air quality degradation and are dangerous to both human health and the environment. Currently, PM mass concentrations determined from gravimetric measurements are the default parameter for gas turbine emissions compliance with PM regulations. The measurement of particle size however, is of significant interest due to its specific effects on health and climate science. The mass concentration can be determined from the number-size distribution measurement but requires the experimental evaluation of effective density of a number of particles to establish the powerlaw relationship. In this study, the effective density of PM emissions from an aircraft Auxiliary Power Unit(APU) with petroleum diesel, conventional aviation fuel(Jet A-1) and a multicomponent surrogate fuel(Banner NP 1014) as combusting fuels have been compared.An experimental configuration consisting of a Differential Mobility Analyzer, a Centrifugal Particle Mass Analyzer and a Condensation Particle Counter(DMA-CPMA-CPC) was deployed for this purpose. Overall, a decrease in the effective density(220–1900 km-3) with an increase in the particle size was observed and found to depend on the engine operating condition and the type of fuel undergoing combustion. There was a change in the trend of the effective densities between the PM emissions generated from the fuels burnt and the engine operating conditions with increasing particle size.展开更多
Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a...Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a Dekati? Low Pressure Impactor were applied to determine mass and number size distributions of PM10 at the inlet and the outlet of the particulate emission control devices at six coalfired chain-grate boilers. The mass size distribution of PM10 generated from coal-fired chain-grate boilers generally displays a bimodal distribution that contains a submicron mode and a coarse mode. The PM in the submicron mode for burning with raw coal contributes to 33% ± 10 % of PM10 emissions, much higher than those for pulverized boilers. And the PM in the submicron mode for burning with briquette contributes up to 86 % of PM10 emissions. Multiclones and scrubbers are not efficient for controlling PM10 emission. Their average collection efficiencies for sub-micron particle and super-micron particle are 34% and 78%, respectively. Operating conditions of industrial steam boilers have influence on PM generation. Peak of the submicron mode during normal operation period is larger than the start-up period.展开更多
Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode coul...Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines,although the burning rate is decreased by higher diluted intake air.In this study,dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug.The effects of engine control parameters such as the excess air coefficient(Lambda),direct injection(DI)ratio,spark interval with DI,and DI timing on combustion,fuel consumption,gaseous emissions,and particulate emissions of a dual injection gasoline engine are studied.It is shown that the lean burn limit can be extended to Lambda=1.8 with a low compression ratio of 10,while the fuel consumption can be obviously improved at Lambda=1.4.There exists a spark window for dual injection stratified lean burn mode,in which the spark timing has a weak effect on combustion.With optimization of the control parameters,the brake specific fuel consumption(BSFC)decreases 9.05%more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure(BMEP)at a 2000 r/min engine speed.The NO_(x) emissions before threeway catalyst(TWC)are 71.31%lower than that of the original engine while the particle number(PN)is 81.45%lower than the original engine.The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions.The BSFC reduction rate is higher than 5%and the PN reduction rate is more than 50%with the speed lower than 2400 r/min and the load lower than 5 bar.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40371056)the Foundation for the Author of NationalExcellent Doctoral Dissertation of China (No. 200149)
文摘Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (Xfd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R^2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents ofPb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution.
基金supported by the South Coast Air Quality Management District (SCAQMD) under contract 12174
文摘This study assessed the effectiveness of three novel control technologies for particulate matter(PM) and volatile organic compound(VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside's commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District(SCAQMD) Method 5.1, as well as a dilution tunnel-based PM method showed statistically significantly reductions for each control technology when compared to baseline testing(i.e., without a catalyst). Overall, particle number emissions decreased with the use of control technologies, with the exception of control technology 2(CT2), which is a grease removal technology based on boundary layer momentum transfer(BLMT) theory. Particle size distributions were unimodal with CT2 resulting in higher particle number populations at lower particle diameters. Organic carbon was the dominant PM component( 99%) for all experiments. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds and showed reductions with the application of the control technologies. Some reductions in mono-aromatic VOCs were also observed with CT2 and the electrostatic precipitator(ESP) CT3 compared to the baseline testing.
文摘Gas turbine particulate matter(PM) emissions contribute to air quality degradation and are dangerous to both human health and the environment. Currently, PM mass concentrations determined from gravimetric measurements are the default parameter for gas turbine emissions compliance with PM regulations. The measurement of particle size however, is of significant interest due to its specific effects on health and climate science. The mass concentration can be determined from the number-size distribution measurement but requires the experimental evaluation of effective density of a number of particles to establish the powerlaw relationship. In this study, the effective density of PM emissions from an aircraft Auxiliary Power Unit(APU) with petroleum diesel, conventional aviation fuel(Jet A-1) and a multicomponent surrogate fuel(Banner NP 1014) as combusting fuels have been compared.An experimental configuration consisting of a Differential Mobility Analyzer, a Centrifugal Particle Mass Analyzer and a Condensation Particle Counter(DMA-CPMA-CPC) was deployed for this purpose. Overall, a decrease in the effective density(220–1900 km-3) with an increase in the particle size was observed and found to depend on the engine operating condition and the type of fuel undergoing combustion. There was a change in the trend of the effective densities between the PM emissions generated from the fuels burnt and the engine operating conditions with increasing particle size.
基金Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant Nos. 41275121 and 41575119) and the National Key Basic Research and Development Program of China (No. 2013CB228505) and Beijing Municipal Science & Technology Commission (Grant No. Z161100000716004).
文摘Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a Dekati? Low Pressure Impactor were applied to determine mass and number size distributions of PM10 at the inlet and the outlet of the particulate emission control devices at six coalfired chain-grate boilers. The mass size distribution of PM10 generated from coal-fired chain-grate boilers generally displays a bimodal distribution that contains a submicron mode and a coarse mode. The PM in the submicron mode for burning with raw coal contributes to 33% ± 10 % of PM10 emissions, much higher than those for pulverized boilers. And the PM in the submicron mode for burning with briquette contributes up to 86 % of PM10 emissions. Multiclones and scrubbers are not efficient for controlling PM10 emission. Their average collection efficiencies for sub-micron particle and super-micron particle are 34% and 78%, respectively. Operating conditions of industrial steam boilers have influence on PM generation. Peak of the submicron mode during normal operation period is larger than the start-up period.
基金supported by Shanghai Automotive Industry Technology Development Foundation and the National Natural Science Foundation of China(Grant No.51861135303).
文摘Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines,although the burning rate is decreased by higher diluted intake air.In this study,dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug.The effects of engine control parameters such as the excess air coefficient(Lambda),direct injection(DI)ratio,spark interval with DI,and DI timing on combustion,fuel consumption,gaseous emissions,and particulate emissions of a dual injection gasoline engine are studied.It is shown that the lean burn limit can be extended to Lambda=1.8 with a low compression ratio of 10,while the fuel consumption can be obviously improved at Lambda=1.4.There exists a spark window for dual injection stratified lean burn mode,in which the spark timing has a weak effect on combustion.With optimization of the control parameters,the brake specific fuel consumption(BSFC)decreases 9.05%more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure(BMEP)at a 2000 r/min engine speed.The NO_(x) emissions before threeway catalyst(TWC)are 71.31%lower than that of the original engine while the particle number(PN)is 81.45%lower than the original engine.The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions.The BSFC reduction rate is higher than 5%and the PN reduction rate is more than 50%with the speed lower than 2400 r/min and the load lower than 5 bar.