BACKGROUND: Calretinin and parvalbumin are members of the intracellular calcium binding protein family, which transform Ca^2+ bioinformation into regulation of neuronal and neural network activities. OBJECTIVE: To ...BACKGROUND: Calretinin and parvalbumin are members of the intracellular calcium binding protein family, which transform Ca^2+ bioinformation into regulation of neuronal and neural network activities. OBJECTIVE: To observe expression and co-expression of calretinin and parvalbumin in rat facial nucleus neurons . DESIGN, TIME AND SETTING: Neuronal morphology experiment was performed at the Research Laboratory of Applied Anatomy, Department Neurobiology and Anatomy, Xiangya Medical College of Central South University from August to October 2007. MATERIALS: Five healthy, adult Sprague Dawley rats were selected. Polyclonal rabbit-anti-parvalbumin and mouse-anti-calretinin were provided by Sigma, USA. METHODS: Rat brains were obtained and cut into coronal slices using a freezing microtome. Slices from the experimental group were immunofluorescent stained with polyclonal rabbit-anti-parvalbumin and mouse-anti-calretinin antibodies. The control group sections were stained with normal rabbit and mouse sera. MAIN OUTCOME MEASURES: Immunofluorescent double-staining was used to detect calretinin and parvalbumin expression. Nissl staining was utilized for facial nucleus localization and neuronal morphology analysis. RESULTS: The majority of facial motor neurons was polygon-shaped, and expressed calretinin and parvalbumin. The calretinin-immunopositive neurons also exhibited parvalbumin immunoreactivity, that is, calretinin and parvalbumin were co-expressed in the same neuron. CONCLUSION: Calretinin and parvalbumin were expressed in facial nucleus neurons, with varied distribution.展开更多
OBJECTIVE Cognitive dysfunc⁃tion is a core disturbance of schizophrenia,appear to emerge from impaired neural activity.The anterior cingulate cortex(ACC)is an integra⁃tion hub for higher-order thalamic inputs impor⁃ta...OBJECTIVE Cognitive dysfunc⁃tion is a core disturbance of schizophrenia,appear to emerge from impaired neural activity.The anterior cingulate cortex(ACC)is an integra⁃tion hub for higher-order thalamic inputs impor⁃tant for complex cognitive tasks such as learning and memory processes,attention and social interaction.Parvalbumin(PV)interneurons could filter information at pyramidal neurons of ACC,and the abnormal PV interneurons have been observed in both humans and animal models of schizophrenia.However,the mechanisms of PV interneurons in ACC regulating cognition in schizophrenia is poorly understood.METHODS The pregnant mice were injected with methyl⁃azoxymethanol acetate(MAM)on gestational day(GD)16 for the neurodevelopmental MAM model of schizophrenia in our study.We investi⁃gated the cognitive behaviors by a serious of tests such as pre-pulse inhibition,Y maze,novel object and novel location recognition and the intrinsic excitability of PV interneurons and inhibi⁃tory synaptic transmission onto pyramidal cells localized in layer 5 of ACC by whole-cell record⁃ings.Further,the PV interneurons were regulat⁃ed by designer receptor exclusively activated by a designer drug(DREADD)system and the D-serine,a co-agonist of N-methyl-D-aspartate(NMDA)receptors.RESULTS①MAM mice showed the cognitive deficits and hypo-excitability of PV interneurons in ACC.②Restoration of PV interneuron activity in ACC improved cognitive function in MAM mice.③Inhibition of PV interneu⁃ron activity in ACC was sufficient to cause cogni⁃tive dysfunction in control mice.④NMDA recep⁃tors of PV interneurons in ACC were impaired in MAM mice.⑤Deficits of NMDA receptor sig⁃naling specifically in PV interneurons and of cog⁃nitive behaviors in MAM mice were rescued by D-serine.CONCLUSION PV interneurons in ACC are closely related to cognitive function in the MAM model of schizophrenia and D-serine maybe a potential therapy for schizophrenia.展开更多
Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the ne...Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the networks, the continuously spiking activity of some neurons was inhibited by synchronous bursts or superbursts of the majority of the other neurons. Immunohistochemical staining subsequent to MEA recordings suggest that the synchronously bursting neurons are parvalbumin-positive interneurons with abundant axonal ramifications. Blocking chemical synaptic transmission by Ca2+-free medium revealed that the curbed spiking neurons are intrinsically active. It is assumed that these neurons are pyramidal cells which may be inhibited by groups of synchronously bursting interneurons. It is propose that the observed burst-induced inhibition is an important principle in the temporal organization of neuronal activity as well as in the restriction of excitation, and thus essential for information processing in the cerebral cortex.展开更多
基金the Scientific Research Program of Hunan Provincial Health Department, No. C2007038the Key Scientific Research Program of Xiangnan College, No. 2007Z011
文摘BACKGROUND: Calretinin and parvalbumin are members of the intracellular calcium binding protein family, which transform Ca^2+ bioinformation into regulation of neuronal and neural network activities. OBJECTIVE: To observe expression and co-expression of calretinin and parvalbumin in rat facial nucleus neurons . DESIGN, TIME AND SETTING: Neuronal morphology experiment was performed at the Research Laboratory of Applied Anatomy, Department Neurobiology and Anatomy, Xiangya Medical College of Central South University from August to October 2007. MATERIALS: Five healthy, adult Sprague Dawley rats were selected. Polyclonal rabbit-anti-parvalbumin and mouse-anti-calretinin were provided by Sigma, USA. METHODS: Rat brains were obtained and cut into coronal slices using a freezing microtome. Slices from the experimental group were immunofluorescent stained with polyclonal rabbit-anti-parvalbumin and mouse-anti-calretinin antibodies. The control group sections were stained with normal rabbit and mouse sera. MAIN OUTCOME MEASURES: Immunofluorescent double-staining was used to detect calretinin and parvalbumin expression. Nissl staining was utilized for facial nucleus localization and neuronal morphology analysis. RESULTS: The majority of facial motor neurons was polygon-shaped, and expressed calretinin and parvalbumin. The calretinin-immunopositive neurons also exhibited parvalbumin immunoreactivity, that is, calretinin and parvalbumin were co-expressed in the same neuron. CONCLUSION: Calretinin and parvalbumin were expressed in facial nucleus neurons, with varied distribution.
文摘OBJECTIVE Cognitive dysfunc⁃tion is a core disturbance of schizophrenia,appear to emerge from impaired neural activity.The anterior cingulate cortex(ACC)is an integra⁃tion hub for higher-order thalamic inputs impor⁃tant for complex cognitive tasks such as learning and memory processes,attention and social interaction.Parvalbumin(PV)interneurons could filter information at pyramidal neurons of ACC,and the abnormal PV interneurons have been observed in both humans and animal models of schizophrenia.However,the mechanisms of PV interneurons in ACC regulating cognition in schizophrenia is poorly understood.METHODS The pregnant mice were injected with methyl⁃azoxymethanol acetate(MAM)on gestational day(GD)16 for the neurodevelopmental MAM model of schizophrenia in our study.We investi⁃gated the cognitive behaviors by a serious of tests such as pre-pulse inhibition,Y maze,novel object and novel location recognition and the intrinsic excitability of PV interneurons and inhibi⁃tory synaptic transmission onto pyramidal cells localized in layer 5 of ACC by whole-cell record⁃ings.Further,the PV interneurons were regulat⁃ed by designer receptor exclusively activated by a designer drug(DREADD)system and the D-serine,a co-agonist of N-methyl-D-aspartate(NMDA)receptors.RESULTS①MAM mice showed the cognitive deficits and hypo-excitability of PV interneurons in ACC.②Restoration of PV interneuron activity in ACC improved cognitive function in MAM mice.③Inhibition of PV interneu⁃ron activity in ACC was sufficient to cause cogni⁃tive dysfunction in control mice.④NMDA recep⁃tors of PV interneurons in ACC were impaired in MAM mice.⑤Deficits of NMDA receptor sig⁃naling specifically in PV interneurons and of cog⁃nitive behaviors in MAM mice were rescued by D-serine.CONCLUSION PV interneurons in ACC are closely related to cognitive function in the MAM model of schizophrenia and D-serine maybe a potential therapy for schizophrenia.
文摘Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the networks, the continuously spiking activity of some neurons was inhibited by synchronous bursts or superbursts of the majority of the other neurons. Immunohistochemical staining subsequent to MEA recordings suggest that the synchronously bursting neurons are parvalbumin-positive interneurons with abundant axonal ramifications. Blocking chemical synaptic transmission by Ca2+-free medium revealed that the curbed spiking neurons are intrinsically active. It is assumed that these neurons are pyramidal cells which may be inhibited by groups of synchronously bursting interneurons. It is propose that the observed burst-induced inhibition is an important principle in the temporal organization of neuronal activity as well as in the restriction of excitation, and thus essential for information processing in the cerebral cortex.